Security Target for the Crypto Library V2.0 on P61N1M3PVD/VD-1/VE-1 according to the Common Criteria for Information Technology Evaluation (CC) at Level EAL6 augmented.

The Crypto Library is developed and provided by NXP Semiconductors, Business Unit Security & Connectivity.
<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>2013-02-14</td>
<td>Initial version of document, derived from ST for Crypto Library on P60x080/052/040PVC</td>
</tr>
<tr>
<td>1.0</td>
<td>2013-05-14</td>
<td>Updated to comply with P61N1M3PVD ST</td>
</tr>
<tr>
<td>1.1</td>
<td>2013-06-18</td>
<td>Secure SHA security level changed from secure to high</td>
</tr>
<tr>
<td>1.2</td>
<td>2013-07-18</td>
<td>Update related to SecureSHA and Hmac after evaluator comments, SymCfg library added</td>
</tr>
<tr>
<td>1.3</td>
<td>2013-11-13</td>
<td>Update after first review</td>
</tr>
<tr>
<td>1.4</td>
<td>2013-11-28</td>
<td>Toe Description updated; Typos corrected; Update of section 6.3.3</td>
</tr>
<tr>
<td>1.5</td>
<td>2013-12-12</td>
<td>Section 1.3 updated</td>
</tr>
<tr>
<td>1.7</td>
<td>2014-01-10</td>
<td>Section 1.3 updated</td>
</tr>
<tr>
<td>1.8</td>
<td>2014-06-27</td>
<td>CC documents version updated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Table 14 updated</td>
</tr>
<tr>
<td>1.9</td>
<td>2014-08-11</td>
<td>Document reference and document headers updated to Crypto Library V2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section 1.3 updated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Table 14 updated</td>
</tr>
<tr>
<td>2.0</td>
<td>2014-11-17</td>
<td>update to include VD-1 and VE-1, VE is superseded by VE-1</td>
</tr>
<tr>
<td>2.1</td>
<td>2015-01-29</td>
<td>VE is removed</td>
</tr>
<tr>
<td>2.3</td>
<td>2017-11-20</td>
<td>Update after evaluator comments.</td>
</tr>
<tr>
<td>2.4</td>
<td>2018-04-17</td>
<td>UGM version update</td>
</tr>
<tr>
<td>2.5</td>
<td>2019-03-01</td>
<td>Another UGM version update</td>
</tr>
</tbody>
</table>

Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com
Glossary

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBC</td>
<td>Cipher Block Chaining (a block cipher mode of operation)</td>
</tr>
<tr>
<td>CBC-MAC</td>
<td>Cipher Block Chaining Message Authentication Code</td>
</tr>
<tr>
<td>CC</td>
<td>Common Criteria Version 3.1</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>DEA</td>
<td>Data Encryption Algorithm</td>
</tr>
<tr>
<td>DES</td>
<td>Data Encryption Standard</td>
</tr>
<tr>
<td>DRNG</td>
<td>Deterministic Random Number Generator</td>
</tr>
<tr>
<td>EAL</td>
<td>Evaluation Assurance Level</td>
</tr>
<tr>
<td>ECB</td>
<td>Electronic Code Book (a block cipher mode of operation)</td>
</tr>
<tr>
<td>ECC</td>
<td>Elliptic Curve Cryptography</td>
</tr>
<tr>
<td>HMAC</td>
<td>Hash-based Message Authentication Code</td>
</tr>
<tr>
<td>IC</td>
<td>Integrated circuit</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology</td>
</tr>
<tr>
<td>MMU</td>
<td>Memory Management Unit</td>
</tr>
<tr>
<td>MX</td>
<td>Memory eXtension</td>
</tr>
<tr>
<td>n/a</td>
<td>not applicable</td>
</tr>
<tr>
<td>NDA</td>
<td>Non Disclosure Agreement</td>
</tr>
<tr>
<td>PKC</td>
<td>Public Key Cryptography</td>
</tr>
<tr>
<td>PP</td>
<td>Protection Profile</td>
</tr>
<tr>
<td>PSW(H)</td>
<td>Program Status Word (High byte)</td>
</tr>
<tr>
<td>SAR</td>
<td>Security Assurance Requirement</td>
</tr>
<tr>
<td>SHA</td>
<td>Secure Hash Algorithm</td>
</tr>
<tr>
<td>SFR</td>
<td>as abbreviation of the CC term: Security Functional Requirement, as abbreviation of the technical term of the SmartMX-family: Special Function Register</td>
</tr>
<tr>
<td>SIM</td>
<td>Subscriber Identity Module</td>
</tr>
<tr>
<td>ST</td>
<td>Security Target.</td>
</tr>
<tr>
<td>TOE</td>
<td>Target of Evaluation.</td>
</tr>
<tr>
<td>TRNG</td>
<td>True Random Number Generator</td>
</tr>
<tr>
<td>TSF</td>
<td>Part of the TOE that realises the security functionality</td>
</tr>
<tr>
<td>TSFI</td>
<td>TSF Interface, a means by which external entities (or subjects in the TOE but outside of the TSF) supply data to the TSF, receive data from the TSF and invoke services from the TSF</td>
</tr>
<tr>
<td>UART</td>
<td>Universal Asynchronous Receiver and Transmitter</td>
</tr>
</tbody>
</table>
1. ST Introduction

This chapter is divided into the following sections: “ST Identification”, “TOE overview”, and “TOE Description”.

1.1 ST Identification

This Security Target is for the Common Criteria evaluation of the “Crypto Library V2.0 on P61N1M3PVD/VD-1/VE-1” provided by NXP Business Unit Security & Connectivity.

ST Identification: Crypto Library V2.0 on P61N1M3PVD/VD-1/VE-1, Rev. 2.5 - 1 March 2019 NSCIB-CC-13-37812

The TOE is a composite TOE, consisting of:

- The hardware “NXP Secure Smart Card Controller P61N1M3PVD/VD-1/VE-1”, which is used as evaluated platform.
- The “Crypto Library V2.0 on P61N1M3PVD/VD-1/VE-1” which is built upon this platform.

This Security Target builds on the Hardware Security Target [11], which refers to the “NXP Secure Smart Card Controller P61N1M3PVD/VD-1/VE-1 provided by NXP Semiconductors, Business Unit Security & Connectivity.

To unify documents derivative independent identification “Crypto Library on SmartMX2” is used where possible. Derivative dependent information is emphasized as such.

1.2 TOE overview

1.2.1 Introduction

The Hardware Security Target [11] contains, in section 1.3 “TOE Overview”, an introduction about the SmartMX2 hardware TOE that is considered in the evaluation. The Hardware Security Target includes IC Dedicated Software stored in the ROM provided with the SmartMX2 hardware platform.

The “Crypto Library V2.0 on P61N1M3PVD/VD-1/VE-1” is a cryptographic library, which provides a set of cryptographic functions that can be used by the Smartcard Embedded Software. The cryptographic library consists of several binary packages that are intended to be linked to the Smartcard Embedded Software. The Smartcard Embedded Software developer links the binary packages that he needs to his Smartcard Embedded Software and the whole is subsequently implemented in arbitrary memory (Flash or EEPROM) of the hardware platform.

The NXP SmartMX2 smart card processor P61N1M3PVD/VD-1/VE-1 provides the computing platform and cryptographic support by means of co-processors for the Crypto Library V2.0 on P61N1M3PVD/VD-1/VE-1.

The Crypto Library V2.0 on P61N1M3PVD/VD-1/VE-1 provides the security functionality described below in addition to the functionality described in the Hardware Security Target [11] for the hardware platform:

- The Crypto Library provides AES\(^1\), DES, Triple-DES (3DES), RSA, RSA key generation, RSA public key computation, ECDSA (ECC over GF(p)) signature generation and verification, ECDSA (ECC over GF(p)) key generation, ECDH (ECC Diffie-Hellman) key-exchange, full point addition (ECC over GF(p)), standard security level SHA-1, SHA-224,

1. AES, DES and Triple-DES can be used in ECB, CBC, CBC-MAC, or CMAC mode.
SHA-256, SHA-384, SHA-512 algorithms, high security level SHA-1, SHA-224, SHA-256, SHA-384, SHA-512 algorithms, and HMAC algorithms.\(^2\)

Most algorithms are resistant against attacks as described in the JIL attack methods for smartcard and similar devices [43].

In addition, the Crypto Library implements a software (pseudo) random number generator which is initialized (seeded) by the hardware random number generator of the SmartMX2.

Finally, the TOE provides a secure copy routine, a secure memory compare routine and includes internal security measures for residual information protection.

1.2.2 Life-Cycle

The life cycle of the hardware platform as part of the TOE is described in section 1.4.5 “TOE Intended Usage” of the Hardware Security Target [11]. The delivery process or the hardware platform is independent from the Crypto Library V2.0 on P61N1M3PVD/VD-1/VE-1.

The Crypto Library is delivered in Phase 1 (for a definition of the Phases refer to section ‘1.2.3 TOE life cycle’ of the Protection Profile [10]) as a software package (a set of binary files) to the developers of Smartcard Embedded Software. The Smartcard Embedded Software may comprise in this case an operating system and/or other smart card software (applications). The Software developer can incorporate the Crypto Library into their product.

The subsequent use of the Crypto Library by Smartcard Embedded Software Developers is out of the control of the developer NXP Semiconductors, Business Line Identification; the integration of the Crypto Library into Smartcard Embedded Software is not part of this evaluation.

Security during Development and Production

The development process of the Crypto Library is part of the evaluation. The access to the implementation documentation, test bench and the source code is restricted to the development team of the Crypto Library V2.0 on P61N1M3PVD/VD-1/VE-1. The security measures installed within NXP, including a secure delivery process, ensure the integrity and quality of the delivered Crypto Library binary files.

1.2.3 Specific Issues of Smartcard Hardware and the Common Criteria

Regarding the Application Note 2 of the Protection Profile [10] the TOE provides additional functionality which is not covered in the Protection profile [10] and the Hardware Security Target [11]. This additional functionality is added using the policy “P.Add-Func” (see section 3.3 of this Security Target).

1.3 TOE Description

The Target of Evaluation (TOE) consists of a hardware part (incl. IC Dedicated Software) and the Smartcard Embedded Software part:

- The hardware part consists of the NXP P61N1M3PVD/VD-1/VE-1 Secure Smart Card Controller with IC Dedicated Software. The IC Dedicated Software is composed of IC Dedicated Test Software and IC Dedicated Support Software. The IC Dedicated

\(^2\) To fend off attackers with high attack potential an adequate security level must be used (references can be found in national and international documents and standards). In particular this means that SHA-1, Secure SHA1, Single-DES, HMAC with SHA1 and short key lengths for RSA, ECC and HMAC shall not be used.
Test Software contains the Test-ROM Software, the IC Dedicated Support Software is composed of the Boot-ROM Software, the Firmware Operating System and the Bootloader Software. All other software is called Smartcard Embedded Software. The hardware part of the TOE includes dedicated guidance documentation.

- The Smartcard Embedded Software “Crypto Library V2.0 on P61N1M3PVD/VD-1/VE-1” consists of a software library and associated documentation. The Crypto Library V2.0 on P61N1M3PVD/VD-1/VE-1 is an additional part that provides cryptographic functions that can be operated on the hardware platform as described in this Security Target. The rest of the Smartcard Embedded Software is not part of the TOE.

The hardware part of the TOE is not described in detail in this document. Details are included in the Hardware Security Target [11] and therefore this latter document will be cited wherever appropriate. However the assets, assumptions, threats, objectives and security functional requirements are tracked in this Security Target.

The TOE components consist of all the TOE components listed in Table 1 of the Hardware Security Target [11] plus all TOE components listed in the table below:

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Release</th>
<th>Date</th>
<th>Form of Delivery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Library File</td>
<td>phSmx2ClAes.lib</td>
<td>1.1</td>
<td>2013-04-08</td>
<td>Electronic file</td>
</tr>
<tr>
<td></td>
<td>phSmx2ClDes.lib</td>
<td>1.0</td>
<td>2013-01-30</td>
<td>Electronic file</td>
</tr>
<tr>
<td></td>
<td>phSmx2ClRsa.lib</td>
<td>1.1</td>
<td>2013-08-02</td>
<td>Electronic file</td>
</tr>
<tr>
<td></td>
<td>phSmx2ClRsaKg.lib</td>
<td>1.1</td>
<td>2013-10-29</td>
<td>Electronic file</td>
</tr>
<tr>
<td></td>
<td>phSmx2ClEccGfp.lib</td>
<td>1.1</td>
<td>2013-10-29</td>
<td>Electronic file</td>
</tr>
<tr>
<td></td>
<td>phSmx2ClSha.lib</td>
<td>1.0</td>
<td>2013-01-30</td>
<td>Electronic file</td>
</tr>
<tr>
<td></td>
<td>phSmx2ClSha512.lib</td>
<td>1.0</td>
<td>2013-01-30</td>
<td>Electronic file</td>
</tr>
<tr>
<td></td>
<td>phSmx2ClRng.lib</td>
<td>1.1</td>
<td>2013-04-08</td>
<td>Electronic file</td>
</tr>
<tr>
<td></td>
<td>phSmx2ClUtils.lib</td>
<td>1.2</td>
<td>2013-07-30</td>
<td>Electronic file</td>
</tr>
<tr>
<td></td>
<td>phSmx2ClSecSha.lib</td>
<td>1.0</td>
<td>2013-09-19</td>
<td>Electronic file</td>
</tr>
<tr>
<td></td>
<td>phSmx2ClHmac.lib</td>
<td>1.0</td>
<td>2013-08-02</td>
<td>Electronic file</td>
</tr>
<tr>
<td></td>
<td>phSmx2ClSymCfg.lib</td>
<td>1.0</td>
<td>2013-10-30</td>
<td>Electronic file</td>
</tr>
<tr>
<td>Header File</td>
<td>phSmx2ClAes.h</td>
<td>1.1</td>
<td>2013-04-08</td>
<td>Electronic file</td>
</tr>
<tr>
<td></td>
<td>phSmx2ClDes.h</td>
<td>1.0</td>
<td>2013-01-30</td>
<td>Electronic file</td>
</tr>
<tr>
<td></td>
<td>phSmx2ClRsa.h</td>
<td>1.1</td>
<td>2013-08-02</td>
<td>Electronic file</td>
</tr>
<tr>
<td></td>
<td>phSmx2ClRsaKg.h</td>
<td>1.1</td>
<td>2013-10-29</td>
<td>Electronic file</td>
</tr>
<tr>
<td></td>
<td>phSmx2ClEccGfp.h</td>
<td>1.1</td>
<td>2013-10-29</td>
<td>Electronic file</td>
</tr>
<tr>
<td></td>
<td>phSmx2ClSha.h</td>
<td>1.0</td>
<td>2013-01-30</td>
<td>Electronic file</td>
</tr>
<tr>
<td></td>
<td>phSmx2ClSha512.h</td>
<td>1.0</td>
<td>2013-01-30</td>
<td>Electronic file</td>
</tr>
<tr>
<td></td>
<td>phSmx2ClRng.h</td>
<td>1.1</td>
<td>2013-04-08</td>
<td>Electronic file</td>
</tr>
<tr>
<td></td>
<td>phSmx2ClUtils.h</td>
<td>1.2</td>
<td>2013-07-30</td>
<td>Electronic file</td>
</tr>
<tr>
<td></td>
<td>phSmx2ClUtils_ImportExportFcts.h</td>
<td>1.2</td>
<td>2013-07-30</td>
<td>Electronic file</td>
</tr>
<tr>
<td></td>
<td>phSmx2ClUtils_RngAccess.h</td>
<td>1.2</td>
<td>2013-07-30</td>
<td>Electronic file</td>
</tr>
<tr>
<td></td>
<td>phSmx2ClTypes.h</td>
<td>1.1</td>
<td>2013-11-15</td>
<td>Electronic file</td>
</tr>
<tr>
<td></td>
<td>phSmx2ClSecSha.h</td>
<td>1.0</td>
<td>2013-07-19</td>
<td>Electronic file</td>
</tr>
</tbody>
</table>
Hardware Description

The NXP SmartMX2 hardware is described in section 1.4.3.1 “Hardware Description” of the Hardware Security Target [11]. The IC Dedicated Support Software stored in the Test-ROM and delivered with the hardware platform is described in section 1.4.3.2 “Software Description” of the Hardware Security Target [11].

Software Description

A Smartcard embedded Software developer may create Smartcard embedded Software to execute on the NXP SmartMX2 hardware. This software is stored in arbitrary memory of the NXP SmartMX2 hardware and is not part of the TOE, with one exception: the Smartcard embedded Software may contain the “Crypto Library V2.0 on P61N1M3PVD/VD-1/VE-1” (or parts thereof) and this Crypto Library (or parts thereof) is part of the TOE.

AES

- The AES algorithm is intended to provide encryption and decryption functionality.
- The Crypto Library implements two library versions for the AES algorithm (phSmx2CIaes library and part of phSmx2CISymCfg library) with different security configurations. For more details on those different configurations please refer the user guidance documentation of the Crypto Library [15].
- The following modes of operation are supported for AES: ECB, CBC, CBC-MAC, CMAC.

3. These crypto functions are supplied as a library rather than as a monolithic program, and hence a user of the library may include only those functions that are actually required – it is not necessary to include all cryptographic functions of the library in every Smartcard Embedded Software. For example, it is possible to omit the RSA or the SHA-1 components. However, some dependencies exist; details are described in the User Guidance [15].
DES/3DES
- The DES and Triple-DES (3DES) algorithm is intended to provide encryption and decryption functionality.
- The Crypto Library implements two library versions for DES algorithm (phSmx2ClDes library and part of phSmx2ClSymCfg library) with different security configurations. For more details on those different configurations please refer the user guidance documentation of the Crypto Library [15].
- The following modes of operation are supported for DES and Triple-DES: ECB, CBC, CBC-MAC, CMAC

To fend off attackers with high attack potential an adequate security level must be used (references can be found in national and international documents and standards). In particular this means that Single-DES shall not be used.

RSA
- The RSA algorithm can be used for encryption and decryption as well as for signature generation, signature verification, message encoding and signature encoding.
- The RSA key generation can be used to generate RSA key pairs.
- The RSA public key computation can be used to compute the public key that belongs to a given private CRT key.

The TOE supports various key sizes for RSA up to a limit of 4096 bits. To fend off attackers with high attack potential an adequate key length must be used (references can be found in national and international documents and standards).

ECDSA (ECC over GF(p))
- The ECDSA (ECC over GF(p)) algorithm can be used for signature generation and signature verification
- The ECDSA (ECC over GF(p)) key generation algorithm can be used to generate ECC over GF(p) key pairs for ECDSA.
- The ECDH (ECC Diffie-Hellman) key exchange algorithm can be used to establish cryptographic keys. It can be also used as secure point multiplication.
- Provide secure point addition for Elliptic Curves over GF(p)

The TOE supports various key sizes for ECC over GF(p) up to a limit of 578 bits. To fend off attackers with high attack potential an adequate key length must be used (references can be found in national and international documents and standards).

SHA
- The SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 algorithms can be used for different purposes such as computing hash values in the course of digital signature creation or key derivation. The Crypto Library implements two versions of each SHA algorithm with different security level: standard and high. The difference between the standard and high security level of the SHA implementations is that the high security level SHA is protected against more side-channel attacks. For more details please refer the user guidance documentation of the Crypto Library or the section 7.2 of this document.

To fend off attackers with high attack potential an adequate security level must be used (references can be found in national and international documents and standards). In particular this means that SHA-1 shall not be used.
HMAC

- The HMAC algorithm can be used to calculate Keyed-Hash Authentication code. The TOE supports the calculation of HMAC authentication code with SHA-1, SHA-224, SHA-256, SHA-384 or SHA-512 hash algorithms. The HMAC algorithm uses only the high security level version of SHA. For more details please refer the user guidance documentation of the Crypto Library or the section 7.2 of this document.

To fend off attackers with high attack potential an adequate security level must be used (references can be found in national and international documents and standards). In particular this means that HMAC with SHA-1 shall not be used. The TOE supports various key sizes for HMAC. To fend off attackers with high attack potential an adequate key length must be used (references can be found in national and international documents and standards).

Resistance of cryptographic algorithms against attacks

The cryptographic algorithms are resistant against attacks as described in JIL, Attack Methods for Smartcards and Similar Devices [43], which include Side Channel Attacks, Perturbation attacks, Differential Fault Analysis (DFA) and timing attacks, except for standard/high security level SHA and HMAC, which are only resistant against Side Channel Attacks and timing attacks.

More details about conditions and restrictions for resistance against attacks are given in the user documentation of the Crypto Library [15].

Random number generation

- The TOE provides access to random numbers generated by a software (pseudo) random number generator and functions to perform a test of the hardware (true) random number generator at initialisation.

Other security functionality

- The TOE includes internal security measures for residual information protection.
- The TOE provides a secure copy routine.
- The TOE provides a secure compare routine

Note that the TOE does not restrict access to the functions provided by the hardware: these functions are still directly accessible to the Smartcard embedded Software.

1.3.3 Documentation

The documentation for the NXP SmartMX2 hardware is listed in section 1.4.3.3 “Documentation” of the Hardware Security Target [11].

The Crypto Library has associated user manuals and one user guidance documentation (see [15]). The user manuals contain:

- the specification of the functions provided by the Crypto Library,
- details of the parameters and options required to call the Crypto Library by the Smartcard Embedded Software and

The user guidance document contains:
• Guidelines on the secure usage of the Crypto Library, including the requirements on the environment (the Smartcard Embedded Software calling the Crypto Library is considered to be part of the environment).

1.3.4 Interface of the TOE

The interface to the NXP SmartMX2 hardware is described in section 1.4.6 “Interface of the TOE” of the Hardware Security Target [11]. The use of this interface is not restricted by the use of the Crypto Library V2.0 on P61N1M3PVD/VD-1/VE-1.

The interface to the TOE additionally consists of software function calls, as detailed in the “User Manual” documents of the Crypto Library V2.0 on P61N1M3PVD/VD-1/VE-1. The developer of the Smartcard Embedded Software will link the required functionality of the Crypto Library V2.0 on P61N1M3PVD/VD-1/VE-1 into the Smartcard Embedded Software as required for his Application.

1.3.5 Life Cycle and Delivery of the TOE

The life cycle and delivery for the NXP SmartMX2 hardware is described in section 1.4.5 “TOE Intended Usage” of the Hardware Security Target [11].

The crypto library is encrypted and signed for delivery. The actual delivery of the signed, encrypted file may be by e-mail or on physical media such as compact disks.

The Crypto Library is delivered as part of Phase 1 (for a definition of the Phases refer to section ‘1.2.3 TOE life cycle’ of the Protection Profile [10]) to the Smartcard Embedded Software developer. The Crypto Library may be delivered by e-mail or by delivering physical media such as compact disks by mail or courier. To protect the Crypto Library during the delivery process, the Crypto Library is encrypted and digitally signed. The Smartcard Embedded Software developer then integrates the Crypto Library in the Smartcard Embedded Software.

1.3.6 TOE Intended Usage

Regarding to phase 7 (for a definition of the Phases refer to section ‘1.2.3 TOE life cycle’ of the Protection Profile [10]), the combination of the smartcard hardware and the Smartcard Embedded Software is used by the end-user. The method of use of the product in this phase depends on the application. The TOE is intended to be used in an unsecured environment, that is, the TOE does not rely on the Phase 7 environment to counter any threat.

For details on the usage of the hardware platform refer to section 1.4.5 “TOE Intended Usage” in the Hardware Security Target [11].

The Crypto Library V2.0 on P61N1M3PVD/VD-1/VE-1 is intended to support the development of the Smartcard Embedded Software since the cryptographic functions provided by the Crypto Library V2.0 on P61N1M3PVD/VD-1/VE-1 include countermeasures against the threats described in this Security Target. The used modules of the Crypto Library V2.0 on P61N1M3PVD/VD-1/VE-1 are linked to the other parts of the Smartcard Embedded Software and they are implemented as part of the Smartcard Embedded Software in arbitrary memory of the hardware platform.

1.3.7 TOE User Environment

The user environment for the crypto library is the Smartcard Embedded Software, developed by customers of NXP, to run on the NXP P61N1M3PVD/VD-1/VE-1 hardware.
1.3.8 General IT features of the TOE

The general features of the NXP P61N1M3PVD/VD-1/VE-1 hardware are described in section 1.3 “TOE overview” of the Hardware Security Target[11]. These are supplemented for the TOE by the functions listed in section 1.2.1 of this Security Target.

2. CC Conformance and Evaluation Assurance Level

The evaluation is based upon:

- **Common Criteria for Information Technology Security Evaluation – Part 1:**
 Introduction and general model, Version 3.1, Revision 5, April 2017, CCMB-2017-04-001,

- **Common Criteria for Information Technology Security Evaluation – Part 2:**
 Security functional components, Version 3.1, Revision 5, April 2017, CCMB-2017-04-002,

- **Common Criteria for Information Technology Security Evaluation – Part 3:**
 Security assurance components, Version 3.1, Revision 5, April 2017, CCMB-2017-04-003,

For the evaluation the following methodology will be used:

- **Common Methodology for Information Technology Security Evaluation:**
 Evaluation methodology, Version 3.1, Revision 5, April 2017, CCMB-2017-04-004,

The chosen level of assurance is **EAL 6 + augmented**.

The augmentations chosen are:

- ASE_TSS.2
- ALC_FLR.1

This Security Target claims the following CC conformances:

- CC 3.1 Part 2 extended, Part 3 conformant, EAL 6 augmented
- Strict Conformance to the Protection Profile [10]

The assurance level for evaluation and the functionality of the TOE are chosen in order to allow the confirmation that the TOE is suitable for use within devices compliant with the German Digital Signature Law.

Note 1. The hardware platform is evaluated according to the assurance level EAL 6 augmented. The evaluation of the hardware platform is appropriate for the composite evaluation since both the EAL level and the augmentations claimed in this Security Target are identical to those claimed for the hardware platform (refer to the Hardware Security Target [11]).

2.1 Conformance Claim Rationale

According to chapter 2 this Security Target claims strict conformance to the Protection Profile [10]. As shown in 1.3 the composed TOE consists of hardware (Secure Smart Card Controller IC) and software (Dedicated Test and Support Software). This is identical to the TOE as defined in [10] and therefore the TOE type is consistent.
3. Security Problem Definition

This Security Target claims strict conformance to the Security IC Platform protection profile [10]. The Assets, Assumptions, Threats and Organizational Security Policies of the Protection Profile are assumed here, together with extensions defined in chapter 3 “Security Problem Definition” of the Hardware Security Target [11]. In the following subsections, only extensions to the different sections are listed. The titles of the chapters that are not extended are cited here for completeness.

3.1 Description of Assets

Since this Security Target claims strict conformance to a PP [10], the assets defined in section 3.1 of the Protection Profile apply to this Security Target.

User Data and TSF data are mentioned as assets in [11]. Since the data computed by the crypto library contains keys, plain text and cipher text that are considered as User Data and e.g. blinding vectors that are considered as TSF data the assets are considered as complete for this Security Target.

3.2 Threats

Since this Security Target claims strict conformance to the PP [10], the threats defined in section 3.2 of the Protection Profile, and described in section 3.2 “Threats” of the Hardware Security Target [11], and shown in Table 2, are valid for this Security Target.

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Defined in</th>
</tr>
</thead>
<tbody>
<tr>
<td>T.Leak-Inherent</td>
<td>Inherent Information Leakage</td>
<td>PP [10]</td>
</tr>
<tr>
<td>T.Phys-Probing</td>
<td>Physical Probing</td>
<td>PP [10]</td>
</tr>
<tr>
<td>T.Malfunction</td>
<td>Malfunction due to Environmental Stress</td>
<td>PP [10]</td>
</tr>
<tr>
<td>T.Phys-Manipulation</td>
<td>Physical Manipulation</td>
<td>PP [10]</td>
</tr>
<tr>
<td>T.Leak-Forced</td>
<td>Forced Information Leakage</td>
<td>PP [10]</td>
</tr>
<tr>
<td>T.Abuse-Func</td>
<td>Abuse of Functionality</td>
<td>PP [10]</td>
</tr>
<tr>
<td>T.RND</td>
<td>Deficiency of Random Numbers</td>
<td>PP [10]</td>
</tr>
<tr>
<td>T.Unauthorised-Access</td>
<td>Unauthorized Memory or Hardware Access</td>
<td>ST [11]</td>
</tr>
</tbody>
</table>

Note 2. Within the Hardware Security Target [11], the threat T.RND has been used in a context where the hardware (true) random number generator is threatened. The TOE consists of both hardware (NXP SmartMX2 P61N1M3PVD/VD-1/VE-1) and software (Crypto Library V2.0 on P61N1M3PVD/VD-1/VE-1). The Crypto Library provides random numbers generated by a software (pseudo) random number generator. Therefore the threat T.RND explicitly includes both deficiencies of hardware random numbers as well as deficiency of software random numbers.
3.3 Organisational Security Policies

All security policies, which are defined in section 3.3 of the PP [10], and due to the chosen packages, are valid for this Security Target. These security policies are listed in the table below:

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Defined in</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.Process-TOE</td>
<td>Protection during TOE Development and Production</td>
<td>PP [10]</td>
</tr>
<tr>
<td>P.Lim_Block_Loader</td>
<td>Limiting and Blocking the Loader Functionality</td>
<td>PP [10]</td>
</tr>
<tr>
<td>P.Crypto-Service</td>
<td>Cryptographic services of the TOE</td>
<td>PP [10]</td>
</tr>
</tbody>
</table>

The hardware security target defines additional security policies. It is listed in the table below:

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Defined in</th>
</tr>
</thead>
</table>

The Crypto Library part of the TOE uses the DES co-processor hardware to provide DES security functionality, and the AES co-processor hardware to provide AES security functionality as listed below in P.Add-Func: Additional Specific Security Functionality.

In addition to the security functionality provided by the hardware and defined in the Security Target of the P61N1M3PVD/VD-1/VE-1 the following additional security functionality is provided by the Crypto Library for use by the Smart Card Embedded Software:

P.Add-Func: Additional Specific Security Functionality

The TOE provides the following additional security functionality to the Smartcard Embedded Software:

- AES encryption and decryption
- DES and Triple-DES encryption and decryption,
- RSA encryption, decryption, signature generation, signature verification, message encoding and signature encoding.
- RSA public key computation
- RSA key generation,
- ECDSA (ECC over GF(p)) signature generation and verification,
- ECC over GF(p) key generation,
- ECDH (ECC Diffie-Hellman) key exchange,
- ECC over GF(p) point addition,
- SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 Hash Algorithms,
- HMAC algorithm
- access to the RNG (implementation of a software RNG),
• secure copy routine,
• secure compare routine;

In addition, the TOE shall
• provide protection of residual information, and
• provide resistance against attacks as described in Note 4 and in section 7.2.

Regarding the Application Note 5 of the Protection Profile [10] there are no other additional policies defined in this Security Target.

3.4 Assumptions

Since this Security Target claims strict conformance to the PP [10], the assumptions defined in section 3.4 of the Protection Profile, described in section 3.4 “Assumptions” of the Hardware Security Target [11], and shown in Table 5, are valid for this Security Target.

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Defined in</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.Process-Sec-IC</td>
<td>Protection during Packaging, Finishing and Personalization</td>
<td>PP [10]</td>
</tr>
<tr>
<td>A.Resp-Appl</td>
<td>Treatment of user data of the Composite TOE</td>
<td>PP [10]</td>
</tr>
<tr>
<td>A.Check-Init</td>
<td>Check of initialisation data by the Smartcard Embedded Software</td>
<td>HW-ST [11]</td>
</tr>
<tr>
<td>A.Key-Function</td>
<td>Usage of Key-dependent Functions</td>
<td>HW-ST [11]</td>
</tr>
</tbody>
</table>

4. Security Objectives

This chapter contains the following sections: “Security Objectives for the TOE”, “Security Objectives for the Security IC Embedded Software” and “Security Objectives for the Operational Environment”.

4.1 Security Objectives for the TOE

The following table lists the security objectives of the Protection Profile [10] and the Hardware Security Target [11].

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Defined in</th>
</tr>
</thead>
<tbody>
<tr>
<td>O.Leak-Inherent</td>
<td>Protection against Inherent Information Leakage</td>
<td>PP [10]</td>
</tr>
<tr>
<td>O.Phys-Probing</td>
<td>Protection against Physical Probing</td>
<td>PP [10]</td>
</tr>
<tr>
<td>O.Malfunction</td>
<td>Protection against Malfunctions</td>
<td>PP [10]</td>
</tr>
<tr>
<td>O.Phys-Manipulation</td>
<td>Protection against Physical Manipulation</td>
<td>PP [10]</td>
</tr>
<tr>
<td>O.Leak-Forced</td>
<td>Protection against Forced Information Leakage</td>
<td>PP [10]</td>
</tr>
<tr>
<td>O.Abuse-Func</td>
<td>Protection against Abuse of Functionality</td>
<td>PP [10]</td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>Defined in</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>O.Identification</td>
<td>TOE Identification</td>
<td>PP [10]</td>
</tr>
<tr>
<td>O.Cap_Avail_Loader</td>
<td>Capability and availability of the Loader</td>
<td>PP [10]</td>
</tr>
<tr>
<td>O.RND</td>
<td>Random Numbers</td>
<td>PP [10]</td>
</tr>
<tr>
<td>O.TDES</td>
<td>Triple DES Functionality</td>
<td>PP [11]</td>
</tr>
<tr>
<td>O.AES</td>
<td>AES Functionality</td>
<td>PP[11]</td>
</tr>
<tr>
<td>O.NVM_INTEGRITY</td>
<td>Integrity support of data stored to EEPROM and Flash</td>
<td>HW-ST [11]</td>
</tr>
<tr>
<td>O.FM_FW</td>
<td>Firmware Mode Firewall</td>
<td>HW-ST [11]</td>
</tr>
<tr>
<td>O.MEM_ACCESS</td>
<td>Area based Memory Access Control</td>
<td>HW-ST [11]</td>
</tr>
<tr>
<td>O.SFR_ACCESS</td>
<td>Special Function Register Access Control</td>
<td>HW-ST [11]</td>
</tr>
</tbody>
</table>

Note 3. Within the Hardware Security [11], the objective O.RND has been used in context with the hardware (true) random number generator (RNG). In addition to this, the TOE also provides a software (pseudo) RNG. Therefore the objective O.RND is extended to comprise also the quality of random numbers generated by the software (pseudo) RNG. See also Note 2 in section 3.2, which extends T.RND in a similar way.

The following additional security objectives are defined by this ST, and are provided by the software part of the TOE:

- **O.SW-AES** The TOE includes functionality to provide encryption and decryption facilities of the AES algorithm, see Note 4.
- **O.SW-DES** The TOE includes functionality to provide encryption and decryption facilities of the DES & Triple-DES algorithm, see Note 4.
- **O.RSA** The TOE includes functionality to provide encryption, decryption, signature creation, signature verification, message encoding and signature encoding using the RSA algorithm, see Note 4.
- **O.RSA_PubExp** The TOE includes functionality to compute an RSA public key from an RSA private key, see Note 4.
- **O.RSA_KeyGen** The TOE includes functionality to generate RSA key pairs, see Note 4.
- **O.ECDSA** The TOE includes functionality to provide signature creation and signature verification using the ECC over GF(p) algorithm, see Note 4.
- **O.ECC_DHKE** The TOE includes functionality to provide Diffie-Hellman key exchange based on ECC over GF(p), see Note 4.
- **O.ECC_KeyGen** The TOE includes functionality to generate ECC over GF(p) key pairs, see Note 4.
- **O.ECC_Add** The TOE includes functionality to provide a point addition based on ECC over GF(p), see Note 4.
O.SHA The TOE includes functionality to provide electronic hashing facilities using the SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512 algorithms.

O.HMAC The TOE includes the functionality to provide keyed-hash message authentication facilities using the HMAC algorithm.

O.Copy The TOE includes functionality to copy memory content, see Note 4.

O.Compare The TOE includes functionality to compare memory content, see Note 4.

O.REUSE The TOE includes measures to ensure that the memory resources being used by the TOE cannot be disclosed to subsequent users of the same memory resource.

Note 4. All introduced security objectives claiming cryptographic functionality and the security objectives for copy and compare are protected against attacks as described in the JIL, Attack Methods for Smartcards and Similar Devices [42], which include Side Channel Attacks, Perturbation attacks, Differential Fault Analysis (DFA) and timing attack. The following exceptions apply:

(a) RSA Public Key computation and RSA Key generation do not contain protective measures against DPA

(b) ECDSA(ECC over GF(p)) Key Generation does not contain protective measures against DPA

(c) SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 are provided by the TOE with two implementations with different level of security:

- One implementation does not contain protective measures against DPA and DFA
- The other implementation does not contain protective measures against DFA but does contains protective measure against DPA

(d) HMAC implementation do not contain protective measures against DFA

This does not mean that the algorithm is insecure; rather at the time of this security target no promising attacks were found. More details about conditions and restrictions for resistance against attacks are given in the user documentation of the Crypto Library.

To fend off attackers with high attack potential an adequate security level must be used (references can be found in national and international documents and standards). In particular this means that SHA-1, Single-DES, and short key lengths for RSA, ECC and HMAC shall not be used.

4.2 Security Objectives for the Security IC Embedded Software

The security objectives for the Security IC Embedded software, listed in the following Table 7, are taken from the PP [10]. Additional refinements in the Hardware Security [11] are also valid in the ST for the Crypto Library (the "IC Dedicated Support Software").

Table 7. Security Objectives for the operational environment

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Applies to phase</th>
</tr>
</thead>
</table>

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2019. All rights reserved.

4.3 Security Objectives for the Operational Environment

The security objective for the Security Objectives for the Operational environment”, listed in Table 8, Additional refinements in the Hardware Security Target [11] are also valid in the ST for the Crypto Library.

Table 8. Security Objectives for the operational environment

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Applies to phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>OE.Process-Sec-IC</td>
<td>Protection during composite product manufacturing</td>
<td>From TOE delivery to phase 6</td>
</tr>
<tr>
<td>OE.Lim_Block_Loader</td>
<td>Limitation of capability and blocking the Loader</td>
<td>This objective is a special requirement of the German scheme. The loader is only used up to Phase 3 by the developer and afterwards permanently blocked before delivery to the customer.</td>
</tr>
</tbody>
</table>

The following additional security objectives for the Smart Card Embedded Software introduced in the Hardware Security Target [11] are also valid in the ST for the crypto library:

OE.Check-Init Check of initialization data by the Smart Card Embedded Software.

4.4 Security Objectives Rationale

Section 7.1 of the Protection Profile provides a rationale how the assumptions, threats, and organisational security policies are addressed by the objectives that are subject of the PP [10]. The following table reproduces the table in section 7.1 of the PP [10].

Table 9. Security Objectives versus Assumptions, Threats or Policies

<table>
<thead>
<tr>
<th>Assumption, Threat or OSP</th>
<th>Security Objective</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.Resp-Appl</td>
<td>OE.Resp-Appl</td>
<td></td>
</tr>
<tr>
<td>P.Crypto-Service</td>
<td>O.TDES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O.AES</td>
<td></td>
</tr>
<tr>
<td>P.Lim_Block_Loader</td>
<td>O.Cap_Avail_Loader</td>
<td>Phase 3</td>
</tr>
<tr>
<td></td>
<td>OE.Lim_Block_Loader</td>
<td></td>
</tr>
</tbody>
</table>
The following Table provides the justification for the additional security objectives. They are in line with the security objectives of the Protection Profile and supplement these according to the additional assumptions and organisational security policy.

Table 10. Additional Security Objectives versus threats, assumptions or policies

<table>
<thead>
<tr>
<th>Threat, Assumption/Policy</th>
<th>Security Objective</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>T.Unauthorised-Access</td>
<td>O.FM_FW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O.MEM_ACCESS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O.SFR_ACCESS</td>
<td></td>
</tr>
<tr>
<td>P.Add-Components</td>
<td>O.NVM_INTEGRITY</td>
<td></td>
</tr>
<tr>
<td>P.Add-Func</td>
<td>O.SW-AES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O.SW-DES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O.RSA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O.RSA_PubExp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O.RSA_KeyGen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O.ECDSA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O.ECC_DHKE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O.ECC_KeyGen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O.ECC_Add</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O.SHA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O.HMAC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O.RND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O.REUSE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O.Copy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O.Compare</td>
<td></td>
</tr>
<tr>
<td>A.Key-Function</td>
<td>OE.Resp-Appl</td>
<td>(Phase 1)</td>
</tr>
<tr>
<td>A.Check-Init</td>
<td>OE.Check-Init</td>
<td>(Phase 1) and (Phase 4 – 6)</td>
</tr>
</tbody>
</table>

The rationale for items in Table 10 can be found in the Hardware Security Target [11], with the exception of P.Add-Func, which is given below:
5. Extended components definition

To define the IT security functional requirements of the TOE an additional family (FDP_SOP) of the Class FDP (user data protection) is defined here. This family describes the functional requirements for basic operations on data in the TOE.

Note that the PP "Security IC Platform Protection Profile [10] also defines extended security functional requirements in chapter 5, which are included in this Security Target.

As defined in CC Part 2, FDP class addresses user data protection. Secure basic operations (FDP_SOP) address protection of user data when it is processed by Copy or Compare function, respectively. Therefore, it is judged that FDP class is suitable for FDP_SOP family.

The reason for adding an extra family to FDP class is that existing families do not address protection of user data against all relevant attacks. In particular, FDP_IFC and FDP_ITT (as well as FPT_ITT) are associated with protection against side-channel attacks.

5.1 Secure basic operations (FDP_SOP)

Family Behaviour

This family defines requirements for the TOE to perform basic operations on data, which could be user data but also key data.

Component levelling

FDP_SOP.1 Requires the TOE to provide the possibility to perform basic secure operations on data

Management: FDP_SOP.1

There are no management activities foreseen.

Audit: FDP_SOP.1

There are no actions defined to be auditable.

FDP_SOP.1 Secure basic operations

Hierarchical to: No other components.

Dependencies: No dependencies.
The TSF shall provide a [selection: Copy, Compare] function on data [Selection: from source [assignment: list of objects] to destination [assignment: list of objects], residing in [assignment: list of objects].

Application note: The different memories, are seen as possible objects

6. Security Requirements

6.1 Security Functional Requirements

To support a better understanding of the combination Protection Profile and Security Target of the hardware platform (P61N1M3PVD/VD-1/VE-1) vs. this Security Target (Crypto Library V2.0 on P61N1M3PVD/VD-1/VE-1), the TOE SFRs are presented in the following sections.

6.1.1 SFRs of the Protection Profile and the Security Target of the platform

The Security Functional Requirements (SFRs) for this TOE include all Security Functional Requirements listed in Section 6.1 of the hardware ST [11]. This includes the SFRs taken from the PP [10] and added to the hardware ST [11].

Note 5. These requirements have already been stated in the hardware ST [11] and are fulfilled by the chip hardware.

6.1.2 Security Functional Requirements added in this Security Target

The SFRs from Section 6.1.1 are further supplemented by the additional SFRs described in the following subsections of this Security Target, as listed in Table 11. The SFRs described in Table 11 are new for the crypto library.

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Defined in</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCS_RNG.1[DET]</td>
<td>Random number generation</td>
<td>PP Section 5.1 [10]; specified in this ST, see below.</td>
</tr>
<tr>
<td>FCS_COP.1[SW-AES]</td>
<td>Cryptographic operation (AES)</td>
<td>CC Part 2 [2]; specified in this ST, see below.</td>
</tr>
<tr>
<td>FCS_COP.1[SW-DES]</td>
<td>Cryptographic operation (DES & TDES)</td>
<td>CC Part 2 [2]; specified in this ST, see below.</td>
</tr>
<tr>
<td>FCS_COP.1[RSA]</td>
<td>Cryptographic operation (RSA encryption, decryption, signature and verification)</td>
<td>CC Part 2 [2]; specified in this ST, see below.</td>
</tr>
<tr>
<td>FCS_COP.1[RSA_Pad]</td>
<td>Cryptographic operation (RSA message and signature encoding)</td>
<td>CC Part 2 [2]; specified in this ST, see below.</td>
</tr>
<tr>
<td>FCS_COP.1[RSA_PubExp]</td>
<td>Cryptographic operation (RSA public key computation)</td>
<td>CC Part 2 [2]; specified in this ST, see below.</td>
</tr>
<tr>
<td>FCS_COP.1[ECDSA]</td>
<td>ECDSA Cryptographic operation (ECC over GF(p) signature generation and verification)</td>
<td>CC Part 2 [2]; specified in this ST, see below.</td>
</tr>
<tr>
<td>FCS_COP.1[ECC_DHKE]</td>
<td>ECDH Cryptographic operation (ECC Diffie-Hellman key)</td>
<td>CC Part 2 [2]; specified in this ST, see below.</td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>Defined in</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>FCS_COP.1[ECC_Additional]</td>
<td>ECC point addition</td>
<td>CC Part 2 [2]; specified in this ST, see below.</td>
</tr>
<tr>
<td>FCS_COP.1[SHA]</td>
<td>Cryptographic operation (SHA-14, SHA-224, SHA-256, SHA-384 and SHA-512)</td>
<td>CC Part 2 [2]; specified in this ST, see below.</td>
</tr>
<tr>
<td>FCS_COP.1[HMAC]</td>
<td>Cryptographic operation (HMAC calculation)</td>
<td>CC Part 2 [2]; specified in this ST, see below.</td>
</tr>
<tr>
<td>FCS_CKM.1[RSA]</td>
<td>Cryptographic key generation (RSA key generation)</td>
<td>CC Part 2 [2]; specified in this ST, see below.</td>
</tr>
<tr>
<td>FCS_CKM.1[ECC]</td>
<td>ECC Cryptographic key generation (ECC over GF(p) key generation)</td>
<td>CC Part 2 [2]; specified in this ST, see below.</td>
</tr>
<tr>
<td>FCS_CKM.4</td>
<td>Cryptographic Key Destruction</td>
<td>CC Part 2 [2]; specified in this ST, see below.</td>
</tr>
<tr>
<td>FDP_RIP.1</td>
<td>Subset residual information protection</td>
<td>CC Part 2 [2]; specified in this ST, see below.</td>
</tr>
</tbody>
</table>

The requirements listed in Table 11 are detailed in the following sub-sections.

FCS_RNG.1[DET] Random number generation

The hardware part of the TOE provides a physical random number generator (RNG) that fulfils FCS_RNG.1. The additional software part of the TOE (Crypto Library) implements a software (pseudo) RNG that fulfils FCS_RNG.1[DET] (see below). This software RNG obtains its seed from the hardware RNG, after the TOE (Crypto Library) has performed a self test of the hardware RNG.

Hierarchical to: No other components.

FCS_RNG.1.1[DET]

The TSF shall provide a deterministic random number generator that implements:

(K.4.1) a chi-squared test on the seed generator.

(DRG.3.1) If initialized with a random seed using a PTRNG of class PTG.2 (as defined in [7]) as random source, the internal state of the RNG shall have at least 256 bit of entropy.

(DRG.3.2) The RNG provides forward secrecy (as defined in [7]).

(DRG.3.3) The RNG provides backward secrecy even if the current internal state is known (as defined in [7]).

FCS_RNG.1.2[DET]

The TSF shall provide numbers that meet:

(K.4.2) class K.4 of AIS20 [5].

(DRG.3.4) The RNG, initialized with a random seed using a PTRNG of class PTG.2 (as defined in [7]) as random source, generates output for which in AES mode 246 and in 3DES mode 235 strings of bit length 128 are mutually different with probability at least 1 – 2-24 in AES mode and 1 – 2-17 in 3DES

4. Due to the AVA_VAN.5 requirement SHA-1 shall not be used.
mode. (DRG.3.5) Statistical test suites cannot practically distinguish the random numbers from output sequences of an ideal RNG. The random numbers must pass test procedure A (as defined in [7]).

Application Notes: (1) The security functionality is resistant against side channel analysis and similar techniques.

(2) The Crypto Library V2.0 on P61N1M3PVD/VD-1/VE-1 provides the smartcard embedded software with separate library calls to initialise the random number generator (which includes the chi-squared test) and to generate random data. The user can call an initialisation function upon use of the random number generator

Dependencies: No dependencies.

Note: Only if the chi-squared test succeeds the hardware RNG seeds the software RNG implemented as part of the Crypto Library on SmartMX2 (as part of security functionality SS.SW_RNG).

Note: The Crypto Library does not prevent the operating system from accessing the hardware RNG. If the hardware RNG is used by the operating system directly, it has to be decided based on the Smartcard Embedded Software’s security needs, what kind of test has to be performed and what requirements will have to be applied for this test. In this case the developer of the Smartcard Embedded Software must ensure that the conditions prescribed in the Guidance, Delivery and Operation Manual for the NXP SmartMX2 Secure Smart Card Controller are met.

FCS_COP.1[SW-AES] Cryptographic operation

Hierarchical to: No other components.

FCS_COP.1.1[SW-AES] The TSF shall perform encryption and decryption in accordance with the specified cryptographic algorithm AES in one of the following modes of operation: ECB, CBC, CBC-MAC or CMAC and cryptographic key sizes 128, 192 and 256 bit that meet the following: FIPS Publication 197, Advanced Encryption Standard (AES) [37], NIST Special Publication 800-38A, 2001 (ECB and CBC mode) [40], ISO 9797-1, Algorithm 1 (CBC-MAC mode) [31], and NIST Special Publication 800-38B (CMAC mode) [41].

Application Notes: The security functionality is resistant against side channel analysis and other attacks described in [43].

Dependencies: [FDP_ITC.1 Import of user data without security attributes, or FDP_ITC.2 Import of user data with security attributes, or FCS_CKM.1 Cryptographic key generation], FCS_CKM.4 Cryptographic key destruction.
FCS_COP.1[SW-DES] Cryptographic operation

Hierarchical to: No other components.

FCS_COP.1.1[SW-DES]
The TSF shall perform encryption and decryption in accordance with the specified cryptographic algorithm DES and Triple-DES in one of the following modes of operation: ECB, CBC, CBC-MAC or CMAC and cryptographic key sizes 1-key DES (56 bit), 2-key TDES (112 bit) or 3-key TDES (168 bit) that meet the following: FIPS Publication 46-3 (DES and TDES) [34] and NIST Special Publication 800-38A, 2001 (ECB and CBC mode) [40], ISO 9797-1, Algorithm 1 (CBC-MAC mode) [31], and NIST Special Publication 800-38B (CMAC mode) [41].

Application Notes:
The security functionality is resistant against side channel analysis and other attacks described in [43]. To fend off attackers with high attack potential an adequate security level must be used (references can be found in national and international documents and standards). In particular this means that Single-DES shall not be used.

Dependencies:
[FDP_ITC.1 Import of user data without security attributes, or FDP_ITC.2 Import of user data with security attributes, or FCS_CKM.1 Cryptographic key generation]
FCS_CKM.4 Cryptographic key destruction.

FCS_COP.1[RSA] Cryptographic operation

Hierarchical to: No other components.

FCS_COP.1.1[RSA]
The TSF shall perform encryption, decryption, signature and verification in accordance with the specified cryptographic algorithm RSA and cryptographic key sizes 512 bits to 4096 bits that meet the following: PKCS #1, v2.1: RSAEP, RSADP, RSASP1, RSAVP1.

Application Notes:
The security functionality is resistant against side channel analysis and other attacks described in [43]. To fend off attackers with high attack potential an adequate key length must be used (references can be found in national and international documents and standards).

Dependencies:
[FDP_ITC.1 Import of user data without security attributes, or FDP_ITC.2 Import of user data with security attributes, or FCS_CKM.1 Cryptographic key generation],
FCS_CKM.4 Cryptographic key destruction.

FCS_COP.1[RSA_Pad] Cryptographic operation

Hierarchical to: No other components.

FCS_COP.1.1[RSA_Pad]
The TSF shall perform message and signature encoding methods in accordance with the specified cryptographic algorithm EME-OAEP and EMSA-PSS and cryptographic key sizes 512 bits to 4096 bits that meet the following: PKCS #1, v2.1: EME-OAEP and EMSA-PSS.
Application Notes: The security functionality is resistant against side channel analysis and other attacks described in [43]. To fend off attackers with high attack potential an adequate key length must be used (references can be found in national and international documents and standards).

 Dependencies: [FDP_ITC.1 Import of user data without security attributes, or FDP_ITC.2 Import of user data with security attributes, or FCS_CKM.1 Cryptographic key generation], FCS_CKM.4 Cryptographic key destruction.

 FCS_COP.1[RSA_PubExp] Cryptographic operation

 Hierarchical to: No other components.

 FCS_COP.1.1[RSA_PubExp] The TSF shall perform public key computation in accordance with the specified cryptographic algorithm RSA and cryptographic key sizes 512 bits to 4096 bits that meet the following: PKCS #1, v2.1.

 Application Notes: The security functionality is resistant against side channel analysis and other attacks described in [43]. To fend off attackers with high attack potential an adequate key length must be used (references can be found in national and international documents and standards).

 (2) The computation will result in the generation of a public RSA key from the private key (in CRT format). As this key is implied by the private key, this is not true key generation, and, to prevent duplication in this ST, this has not been included as a separate FCS_CKM.1 SFR.

 Dependencies: [FDP_ITC.1 Import of user data without security attributes, or FDP_ITC.2 Import of user data with security attributes, or FCS_CKM.1 Cryptographic key generation], FCS_CKM.4 Cryptographic key destruction.

 FCS_COP.1[ECDSA] Cryptographic operation

 Hierarchical to: No other components.

 FCS_COP.1.1[ECDSA] The TSF shall perform signature generation and verification in accordance with the specified cryptographic algorithm ECDSA / ECC over GF(p) and cryptographic key sizes 128 to 576 bits that meet the following: ISO/IEC 15946-2.

 Application Notes: The security functionality is resistant against side channel analysis and other attacks described in [43]. To fend off attackers with high attack potential an adequate key length must be used (references can be found in national and international documents and standards).

 Dependencies: [FDP_ITC.1 Import of user data without security attributes, or FDP_ITC.2 Import of user data with security attributes, or FCS_CKM.1 Cryptographic key generation], FCS_CKM.4 Cryptographic key destruction.

 FCS_COP.1[ECC_DHKE] Cryptographic operation

 Hierarchical to: No other components.
FCS_COP.1.1[ECC_DHKE] The TSF shall perform Diffie-Hellman Key Exchange in accordance with the specified cryptographic algorithm ECC over GF(p) and cryptographic key sizes 128 to 576 bits that meet the following: ISO/IEC 15946-3.

Application Notes: (1) The security functionality is resistant against side channel analysis and other attacks described in [43]. To fend off attackers with high attack potential an adequate key length must be used (references can be found in national and international documents and standards).

(2) The security functionality does not provide the complete key exchange procedure, but only the point multiplication which is used for the multiplication of the private key with the communication partner’s public key. Therefore this function can be used as part of a Diffie-Hellman key exchange as well pure point multiplication.

Dependencies: [FDP_ITC.1 Import of user data without security attributes, or FDP_ITC.2 Import of user data with security attributes, or FCS_CKM.1 Cryptographic key generation], FCS_CKM.4 Cryptographic key destruction.

FCS_COP.1[ECC_Additional] Cryptographic operation

Hierarchical to: No other components.

FCS_COP.1.1[ECC_Additional] The TSF shall perform a full point addition in accordance with the specified cryptographic algorithm ECC over GF(p) and cryptographic key sizes 128 to 576 bits that meet the following: ISO/IEC 15946-1.

Application Notes: (1) The security functionality is resistant against side channel analysis and other attacks described in [43]. To fend off attackers with high attack potential an adequate key length must be used (references can be found in national and international documents and standards).

Dependencies: [FDP_ITC.1 Import of user data without security attributes, or FDP_ITC.2 Import of user data with security attributes, or FCS_CKM.1 Cryptographic key generation], FCS_CKM.4 Cryptographic key destruction.

FCS_COP.1[SHA] Cryptographic operation

Hierarchical to: No other components.

FCS_COP.1.1[SHA] The TSF shall perform cryptographic checksum generation in accordance with the specified cryptographic algorithm SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 and cryptographic key size none that meet the following: FIPS 180-3.

Application Notes: (1) The security functionality is resistant against side channel analysis and timing attacks as described in [43]. To fend off attackers with high attack potential an adequate security level must be used (references can be found in national and
international documents and standards). In particular this means that SHA-1 shall not be used.

(2) The length of the data to hash has to be a multiple of one byte. Arbitrary bit lengths are not supported.

Dependencies: [FDP_ITC.1 Import of user data without security attributes, or FDP_ITC.2 Import of user data with security attributes, or FCS_CKM.1 Cryptographic key generation], FCS_CKM.4 Cryptographic key destruction.

The TSF provides functionality to generate a variety of key pairs. In order for the key generation to function correctly, the operation must be performed in accordance with a specified standard and with cryptographic key sizes out of a specified range. The following Security Functional Requirements to the TOE can be derived from this CC component:

FCS_COP.1[HMAC] Cryptographic operation

Hierarchical to: No other components.

FCS_COP.1.1[HMAC] The TSF shall perform keyed-hash message authentication code calculation in accordance with a specified hash algorithm SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 and cryptographic key sizes none that meet the following: FIPS PUB 198-1 [39].

Application Notes: The security functionality is resistant against side channel analysis and other attacks described in [43]. To fend off attackers with high attack potential an adequate security level must be used (references can be found in national and international documents and standards). In particular this means that HMAC with SHA-1 shall not be used and an adequate key length must be used (references can be found in national and international documents and standards).

Dependencies: [FDP_ITC.1 Import of user data without security attributes, or FDP_ITC.2 Import of user data with security attributes, or FCS_CKM.1 Cryptographic key generation] FCS_CKM.4 Cryptographic key destruction.

FCS_CKM.1[RSA] Cryptographic Key Generation

Hierarchical to: No other components.

FCS_CKM.1.1[RSA] The TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm RSA and specified cryptographic key sizes 512-4096 bits that meet the following: PKCS #1, v2.1 and "Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen: Bekanntmachung zur elektronischen Signatur nach dem Signaturgesetz und der Signaturverordnung (Übersicht über geeignete Algorithmen), German "Bundesanzeiger Nr. 85", p. 2034, June 7th, 2011".

Application Notes: The security functionality is resistant against side channel analysis and other attacks described in [43]. To fend off
attacked with high attack potential an adequate key length must be used (references can be found in national and international documents and standards).

Dependencies: [FCS_CKM.2 Cryptographic key distribution, or FCS_COP.1 Cryptographic operation] FCS_CKM.4 Cryptographic key destruction

Note: The standard “Geeignete Algorithmen” sets up requirements for RSA key generation, if the generated RSA key pair is used in a signature application according to the German Signature Act. This standard is also accepted by the German Bundesamt für Sicherheit in der Informationstechnik (BSI) for Common Criteria evaluations that include the assurance requirements AVA_VAN.5 with high attack potential.

FCS_CKM.1[ECC] Cryptographic Key Generation
Hierarchical to: No other components.
FCS_CKM.1.1[ECC] The TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm ECDSA (ECC over GF(p)) and specified cryptographic key sizes 128-576 bits that meet the following: ISO/IEC 15946-1 and "Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen: Bekanntmachung zur elektronischen Signatur nach dem Signaturgesetz und der Signaturverordnung (Übersicht über geeignete Algorithmen), German "Bundesanzeiger Nr. 85", p. 2034, June 7th, 2011".

Application Notes: The security functionality is resistant against side channel analysis and other attacks described in [43]. To fend off attackers with high attack potential an adequate key length must be used (references can be found in national and international documents and standards).

Dependencies: [FCS_CKM.2 Cryptographic key distribution or FCS_COP.1 Cryptographic operation] FCS_CKM.4 Cryptographic key destruction

Note: The standard “Geeignete Algorithmen” sets up requirements for ECDSA key generation, if the generated ECDSA key pair is used in a signature application according to the German Signature Act. This standard is also accepted by the German Bundesamt für Sicherheit in der Informationstechnik (BSI) for Common Criteria evaluations that include the assurance requirements AVA_VAN.5 with high attack potential.

FCS_CKM.4 Cryptographic Key Destruction
Hierarchical to: No other components.
FCS_CKM.4.1 The TSF shall destroy cryptographic keys in accordance with a specified cryptographic key destruction method overwrite that meets the following: ISO11568

Application Notes: The Crypto Library V2.0 on P61N1M3PVD/VD-1/VE-1 provides the smartcard embedded software with library calls to
perform various cryptographic algorithms that involve keys (e.g. AES, DES, RSA, etc.). Through the parameters of the library calls the smartcard embedded software provides keys for the cryptographic algorithms. To perform its cryptographic algorithms the library copies these keys, or a transformation thereof, to the working-buffer (supplied by the smartcard embedded software) and/or the memory/special function registers of the P61N1M3PVD/VD-1/VE-1. Depending upon the algorithm the library either overwrites these keys before returning control to the smartcard embedded software or provides a library call to through which the smartcard embedded software can clear these keys. In the case of a separate library call to clear keys the guidance instructs the smartcard embedded software when/how this call should be used.

Dependencies: [FDP_ITC.1 Import of user data without security attributes, or FDP_ITC.2 Import of user data with security attributes, or FCS_CKM.1 Cryptographic Key Generation]

Note: Clearing of keys that are provided by the smartcard embedded software to the Crypto Library V2.0 on P61N1M3PVD/VD-1/VE-1 is the responsibility of the smartcard embedded software.

FDP_RIP.1 Subset Residual Information Protection

Hierarchical to: No other components.

This family addresses the need to ensure that information in a resource is no longer accessible when the resource is deallocated, and that therefore newly created objects do not contain information that was accidentally left behind in the resources used to create the objects. The following Functional Requirement to the TOE can be derived from the CC component FDP_RIP.1:

FDP_RIP.1.1 The TSF shall ensure that any previous information content of a resource is made unavailable upon the deallocation of the resource from the following objects: all objects (variables) used by the Crypto Library as specified in the user guidance documentation.

Dependencies: No dependencies.

Note 6. The TSF ensures that, upon exit from each function, with the exception of input parameters, return values or locations where it is explicitly documented that values remain at specific addresses, any memory resources used by that function that contained temporary or secret values are cleared.

6.1.3 Extended TOE security functional requirements

The SFRs mention in Section 6.1.1 and 6.1.2 are further supplemented by two iterations of an extended SFR introduced in the following subsections of this Security Target, as listed in Table 12.
Table 12. SFRs defined in this Security Target

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Defined in</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDP_SOP.1[Copy]</td>
<td>Secure basic operations (secure copy)</td>
<td>Specified in this ST, see below.</td>
</tr>
<tr>
<td>FDP_SOP.1[Compare]</td>
<td>Secure basic operations (secure compare)</td>
<td>Specified in this ST, see below.</td>
</tr>
</tbody>
</table>

The FDP_SOP.1 (secure basic operations) is introduced as a new component within a new family FDP_SOP consisting only of that new component.

FDP_SOP.1[Copy]
Hierarchical to: No other components.
FDP_SOP.1.1 The TSF shall provide a *Copy* function on data from source ROM, RAM, Flash and EEPROM to destination RAM.
Application Notes: The security functionality is resistant against side channel analysis and other attacks described in [43].

FDP_SOP.1[Compare]
Hierarchical to: No other components.
FDP_SOP.1.1 The TSF shall provide a *Compare* function on data residing in ROM, RAM, Flash and EEPROM.
Application Notes: The security functionality is resistant against side channel analysis and other attacks described in [43].

6.2 Security Assurance Requirements

Table 13 below lists all security assurance components that are valid for this Security Target. These security assurance components are required by EAL6 or by the Protection Profile [10]. Augmentations by the Security Target are marked with ST.

Table 13. Security Assurance Requirements EAL6+ and PP augmentations

<table>
<thead>
<tr>
<th>SAR</th>
<th>Title</th>
<th>Required by</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADV_ARC.1</td>
<td>Security architecture description</td>
<td>PP / EAL6</td>
</tr>
<tr>
<td>ADV_FSP.5</td>
<td>Complete semi-formal functional specification with additional error information</td>
<td>EAL6</td>
</tr>
<tr>
<td>ADV_IMP.2</td>
<td>Complete mapping of implementation representation of the TSF</td>
<td>EAL6</td>
</tr>
<tr>
<td>ADV_INT.3</td>
<td>Minimally complex internals</td>
<td>EAL6</td>
</tr>
<tr>
<td>ADV_TDS.5</td>
<td>Complete Semiformal modular design</td>
<td>EAL6</td>
</tr>
<tr>
<td>ADV_SPM.1</td>
<td>Security Policy Modelling</td>
<td>EAL6</td>
</tr>
<tr>
<td>AGD_OPE.1</td>
<td>Operational user guidance</td>
<td>PP / EAL6</td>
</tr>
<tr>
<td>AGD_PRE.1</td>
<td>Preparative procedures</td>
<td>PP / EAL6</td>
</tr>
</tbody>
</table>
Security Assurance Requirements

<table>
<thead>
<tr>
<th>SAR</th>
<th>Title</th>
<th>Required by</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALC_CMC.5</td>
<td>Advanced support</td>
<td>PP / EAL6</td>
</tr>
<tr>
<td>ALC_CMS.5</td>
<td>Development tools CM coverage</td>
<td>EAL6</td>
</tr>
<tr>
<td>ALC_DEL.1</td>
<td>Delivery procedures</td>
<td>PP / EAL6</td>
</tr>
<tr>
<td>ALC_DVS.2</td>
<td>Sufficiency of security measures</td>
<td>PP / EAL6</td>
</tr>
<tr>
<td>ALC_FLR.1</td>
<td>Flaw remediation</td>
<td>ST</td>
</tr>
<tr>
<td>ALC_LCD.1</td>
<td>Developer defined life-cycle model</td>
<td>PP / EAL6</td>
</tr>
<tr>
<td>ALC_TAT.3</td>
<td>Compliance with implementation standards – all parts</td>
<td>EAL6</td>
</tr>
<tr>
<td>ASE_CCL.1</td>
<td>Conformance claims</td>
<td>PP / EAL6</td>
</tr>
<tr>
<td>ASE_ECD.1</td>
<td>Extended components definition</td>
<td>PP / EAL6</td>
</tr>
<tr>
<td>ASE_INT.1</td>
<td>ST introduction</td>
<td>PP / EAL6</td>
</tr>
<tr>
<td>ASE_OBJ.2</td>
<td>Security objectives</td>
<td>PP / EAL6</td>
</tr>
<tr>
<td>ASE_REQ.2</td>
<td>Derived security requirements</td>
<td>PP / EAL6</td>
</tr>
<tr>
<td>ASE_SPD.1</td>
<td>Security problem definition</td>
<td>PP / EAL6</td>
</tr>
<tr>
<td>ASE_TSS.2</td>
<td>TOE summary specification</td>
<td>ST</td>
</tr>
<tr>
<td>ATE_COV.3</td>
<td>Rigorous analysis of coverage</td>
<td>EAL6</td>
</tr>
<tr>
<td>ATE_DPT.3</td>
<td>Testing: modular design</td>
<td>EAL6</td>
</tr>
<tr>
<td>ATE_FUN.2</td>
<td>Ordered functional testing</td>
<td>EAL6</td>
</tr>
<tr>
<td>ATE_IND.2</td>
<td>Independent testing - sample</td>
<td>PP / EAL6</td>
</tr>
<tr>
<td>AVA_VAN.5</td>
<td>Advanced methodical vulnerability analysis</td>
<td>PP / EAL6</td>
</tr>
</tbody>
</table>

Security Assurance Requirement ADV_SPM.1 requires the developer to provide a Security Policy Model for the Crypto Library. However, the hardware platform already provides a Security Policy Model, which also applies unchanged to the composite product. As the SFRs introduced in this ST do not add a new Security Policy or change the rules of existing Security Policies of the hardware, there is no need for an additional Security Policy Model for the Crypto Library.

6.2.1 Refinements of the TOE Security Assurance Requirements

The ST claims strict conformance to the Protection Profile [10], and therefore it has to be conform to the refinements of the TOE assurance requirements (see Application Note 23 of the PP).

The Hardware Security Target [11] has chosen the evaluation assurance level EAL6+. This Hardware Security Target bases on the Protection Profile [10], which requires the lower level EAL4+. This implies that the refinements made in the Protection Profile [10], section 6.2.1 Refinements of the TOE Assurance Requirements, for EAL4+ had to be refined again in order to ensure EAL6+ in the Hardware Security Target (this was necessary for ACM_CMS.5 and ADV_FSP.5).
Since these refinements explain and interpret the CC for hardware, these refinements do not affect the additional software in this composite TOE. Therefore all refinements made in the PP [10] are valid without change for the composite TOE.

6.3 Security Requirements Rationale

6.3.1 Rationale for the security functional requirements

Section 7.2 of the PP [10] provides a rationale for the mapping between security functional requirements and security objectives defined in the Protection Profile. The mapping is reproduced in the following table.

Table 14. Mapping of Security Requirements to Security Objectives in the PP

<table>
<thead>
<tr>
<th>Objective</th>
<th>TOE Security Functional Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>O.Leak-Inherent</td>
<td>FDP_ITT.1 “Basic internal transfer protection”</td>
</tr>
<tr>
<td></td>
<td>FPT_ITT.1 “Basic internal TSF data transfer protection”</td>
</tr>
<tr>
<td></td>
<td>FDP_IFC.1 “Subset information flow control”</td>
</tr>
<tr>
<td>O.Phys-Probing</td>
<td>FPT_PHP.3 “Resistance to physical attack”</td>
</tr>
<tr>
<td>O.Malfunction</td>
<td>FRU_FLT.2 “Limited fault tolerance”</td>
</tr>
<tr>
<td></td>
<td>FPT_FLS.1 “Failure with preservation of secure state”</td>
</tr>
<tr>
<td>O.Phys-Manipulation</td>
<td>FPT_PHP.3 “Resistance to physical attack”</td>
</tr>
<tr>
<td>O.Leak-Forced</td>
<td>All requirements listed for O.Leak-Inherent</td>
</tr>
<tr>
<td></td>
<td>FDP_ITT.1, FPT_ITT.1, FDP_IFC.1</td>
</tr>
<tr>
<td></td>
<td>plus those listed for O.Malfunction and O.Phys-Manipulation</td>
</tr>
<tr>
<td></td>
<td>FRU_FLT.2, FPT_FLS.1, FPT_PHP.3</td>
</tr>
<tr>
<td>O.Abuse-Func</td>
<td>FMT_LIM.1 “Limited capabilities”</td>
</tr>
<tr>
<td></td>
<td>FMT_LIM.2 “Limited availability”</td>
</tr>
<tr>
<td></td>
<td>plus those for O.Leak-Inherent, O.Phys-Probing, O.Malfunction,</td>
</tr>
<tr>
<td></td>
<td>O.Phys-Manipulation, O.Leak-Forced</td>
</tr>
<tr>
<td></td>
<td>FDP_ITT.1, FPT_ITT.1, FDP_IFC.1, FPT_PHP.3, FRU_FLT.2, FPT_FLS.1</td>
</tr>
<tr>
<td>O.Identification</td>
<td>FAU_SAS.1 “Audit storage”</td>
</tr>
<tr>
<td>O.RND</td>
<td>FCS_RNG.1 “Quality metric for random numbers” for the hardware RNG</td>
</tr>
<tr>
<td></td>
<td>plus those for O.Leak-Inherent, O.Phys-Probing, O.Malfunction,</td>
</tr>
<tr>
<td></td>
<td>O.Phys-Manipulation, O.Leak-Forced</td>
</tr>
<tr>
<td></td>
<td>FDP_ITT.1, FPT_ITT.1, FDP_IFC.1, FPT_PHP.3, FRU_FLT.2, FPT_FLS.1</td>
</tr>
<tr>
<td></td>
<td>plus: see [16] (for aspects concerning the software RNG)</td>
</tr>
<tr>
<td>O.Cap_Avail_Loader</td>
<td>FMT_LIM.1/Loader, FMT_LIM.2/Loader</td>
</tr>
<tr>
<td>O.TDES</td>
<td>FCS_COP.1/TDES</td>
</tr>
<tr>
<td></td>
<td>FCS_CKM.4/TDES</td>
</tr>
<tr>
<td>O.AES</td>
<td>FCS_COP.1/AES</td>
</tr>
<tr>
<td></td>
<td>FCS_CKM.4/AES</td>
</tr>
</tbody>
</table>
Note 7. O.RND has been extended if compared to the PP [10] to include also a software RNG (see also Note 3). The rationale given in the PP only covers the part of O.RND dealing with the hardware RNG. For O.RND additional functionality (software RNG) and additional requirements (FCS_RNG.1[DET]) have been added. The explanation following Table 16 describe this in more detail.

The Hardware Security Target [11] lists a number of security objectives and SFRs that are additional to the Security Objectives and SFRs in the Protection Profile. These are listed in the following table.

Table 15. Mapping of SFRs to Security Objectives in the Hardware ST

<table>
<thead>
<tr>
<th>Objectives</th>
<th>TOE Security Functional Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>O.NVM_INTEGRITY</td>
<td>FDP_SDII.2[HW]</td>
</tr>
</tbody>
</table>
| O.FM_FW | FDP_ACC.1[MEM]
FDP_ACF.1[MEM]
FMT_MSA.3[MEM] |
| O.MEM_ACCESS | FDP_ACC.1[MEM]
FDP_ACF.1[MEM]
FMT_MSA.3[MEM]
FMT_MSA.1[MEM]
FMT_MSA.1[SFR]
FMT_SMF.1[HW] |
| O.SFR_ACCESS | FDP_ACC.1[SFR]
FDP_ACF.1[SFR]
FMT_MSA.3[SFR]
FMT_MSA.1[SFR]
FMT_SMF.1[HW] |

The rationales for the mappings in Table 15 may be found in the Hardware ST [11].

Finally, this ST lists a number of security objectives and SFRs additional to both the PP and the Hardware ST. These are listed in the following table.

Table 16. Mapping of SFRs to Security Objectives in this ST

<table>
<thead>
<tr>
<th>Objectives</th>
<th>TOE Security Functional Requirements</th>
</tr>
</thead>
</table>
| O.SW-AES | FCS_COP.1[SW-AES]
ADV.ARC.1 (and underlying platform SFRs) |
| O.SW-DES | FCS_COP.1[SW-DES]
ADV.ARC.1 (and underlying platform SFRs) |
| O.RSA | FCS_COP.1[RSA]
FCS_COP.1[RSA_Pad]
ADV.ARC.1 (and underlying platform SFRs) |
| O.RSA_PubExp | FCS_COP.1[RSA_PubExp]
ADV.ARC.1 (and underlying platform SFRs) |
| O.RSA_KeyGen | FCS_CKM.1[RSA]
ADV.ARC.1 (and underlying platform SFRs) |
| O.ECDSA | FCS_COP.1[ECDSA] |
Objectives

<table>
<thead>
<tr>
<th>Objectives</th>
<th>TOE Security Functional Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>O.ECC_DHKE</td>
<td>ADV.ARC.1 (and underlying platform SFRs)</td>
</tr>
<tr>
<td>O.ECC_Add</td>
<td>FCS_COP.1[ECC_Additional] ADV.ARC.1 (and underlying platform SFRs)</td>
</tr>
<tr>
<td>O.ECC_KeyGen</td>
<td>FCS_CKM.1[ECC] ADV.ARC.1 (and underlying platform SFRs)</td>
</tr>
<tr>
<td>O.SHA</td>
<td>FCS_COP.1[SHA] ADV.ARC.1 (and underlying platform SFRs)</td>
</tr>
<tr>
<td>O.HMAC</td>
<td>FCS_COP.1[HMAC] ADV.ARC.1 (and underlying platform SFRs)</td>
</tr>
<tr>
<td>O.Copy</td>
<td>FDP_SOP.1[Copy] ADV.ARC.1 (and underlying platform SFRs)</td>
</tr>
<tr>
<td>O.REUSE</td>
<td>FDP_RIP.1 FCS_CKM.4</td>
</tr>
<tr>
<td>O.Compare</td>
<td>FDP_SOP.1[Compare] ADV.ARC.1 (and underlying platform SFRs)</td>
</tr>
<tr>
<td>O.RND</td>
<td>FCS_RNG.1[DET] ADV.ARC.1 (and underlying platform SFRs)</td>
</tr>
</tbody>
</table>

The justification of the security objectives **O.SW-AES, O.SW-DES, O.RSA, O.RSA_PubExp, O.RSA_KeyGen, O.ECDSA, O.ECC_DHKE, O.ECC_Add, O.ECC_KeyGen, O.SHA, O.HMAC, O.COPY and O.COMPARE** are all as follows:

- Each objective is directly implemented by a single SFR specifying the (cryptographic) service that the objective wishes to achieve (see the above table for the mapping).
- The requirements and architectural measures that originally were taken from the Protection Profile [10] and thus were also part of the Security Target of the hardware (chip) evaluation support the objective:
 - ADV.ARC.1 (and underlying platform SFRs) supports the objective by ensuring that the TOE works correctly (i.e., all of the TOE’s capabilities are ensured) within the specified operating conditions and maintains a secure state when the TOE is outside the specified operating conditions. A secure state is also entered when perturbation or DFA attacks are detected.
 - ADV.ARC.1 (and underlying platform SFRs) ensures that no User Data (plain text data, keys) or TSF Data is disclosed when they are transmitted between different functional units of the TOE (i.e., the different memories, the CPU, cryptographic co-processors), thereby supporting the objective in keeping confidential data secret.
 - ADV.ARC.1 (and underlying platform SFRs) by ensuring that User Data and TSF Data are not accessible from the TOE except when the Smartcard Embedded Software decides to communicate them via an external interface.

The justification of the security objective **O.REUSE** is as follows:
• O.REUSE requires the TOE to provide procedural measures to prevent disclosure of memory contents that was used by the TOE. This applies to the Crypto Library V2.0 on P61N1M3PVD/VD-1/VE-1 and is met by the SFR FDP_RIP.1 and FCS_CKM.4, which requires the library to make unavailable all memory contents that has been used by it. Note that the requirement for residual information protection applies to all functionality of the Cryptographic Library.

The justification of the security objective O.RND is as follows:

• O.RND requires the TOE to generate random numbers with (a) ensured cryptographic quality (i.e. not predictable and with sufficient entropy) such that (b) information about the generated random numbers is not available to an attacker.

(a) Ensured cryptographic quality (sufficient entropy part) of generated random numbers is met by FCS_RNG.1.1[DET] through the characteristic ‘deterministic’ and the random number generator meeting ANSI X9.17 (FCS_RNG.1.2[DET]). Ensured cryptographic quality (not predictable part) of generated random numbers is met by FCS_RNG.1[DET] through the characteristic ‘chi-squared test of the seed generator’ and FCS_RNG.1 from the certified hardware platform.

(b) Information about the generated random numbers is not available to an attacker is met through ADV.ARC.1, which prevent physical manipulation and malfunction of the TOE and support this objective because they prevent attackers from manipulating or otherwise affecting the random number generator.

6.3.2 Extended requirements

This Security Target does define extended requirements, because there are no existing SFRs available that cover the claimed functionality. The PP [10] contains extended functional requirements, which are explained in the rationale of the PP (see [10], section 5).

6.3.3 Dependencies of security requirements

SFRs [FDP_ITC.1, or FDP_ITC.2 or FCS_CKM.1] are not included in this Security Target for FCS_COP.1[SW-AES], FCS_COP.1[SW-DES], FCS_COP.1[SHA] and FCS_COP.1[HMAC] since the TOE only provides a pure engine for these algorithms without additional features like the handling of keys or importing data from outside the TOE. Therefore the Smartcard Embedded Software must fulfil these requirements related to the needs of the realized application.

6.3.4 Rationale for the Assurance Requirements

The selection of assurance components and augmentations is generally based on EAL6, the underlying Protection Profile [10], and the Security Target of the hardware [11].

EAL6 was chosen to provide an even stronger baseline of assurance than the EAL4 in the Protection Profile. The augmentations ALC_FLR.1 and ASE_TSS.2 were chosen to extend the level of assurance even further.

7. TOE Summary Specification

This chapter describes the “IT Security Functionality”.

7.1 IT Security Functionality

The evaluation of this cryptographic library is performed as a composite evaluation, where the TOE comprises both the underlying hardware and the embedded software (cryptographic library). The TOE of this composite evaluation therefore extends the
security functionality already available in the chip platform (see section 7.1 “Portions of the TOE Security Functionality” of the Hardware Security [11]). The security functionality of the hardware platform is listed in the following table; the additional security functionality provided by the cryptographic library is described in the following sub-sections.

Table 17. IT security functionalities defined in the Hardware Security Target [11]

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS.RNG</td>
<td>Random Number Generator</td>
</tr>
<tr>
<td>SS.HW_AES</td>
<td>AES coprocessor</td>
</tr>
<tr>
<td>SS.HW_DES</td>
<td>Triple-DES coprocessor</td>
</tr>
<tr>
<td>SS.CRC</td>
<td>Cyclic Redundancy Check</td>
</tr>
<tr>
<td>SF.OPC</td>
<td>Control of Operating Conditions</td>
</tr>
<tr>
<td>SF.PHY</td>
<td>Protection against Physical Manipulation</td>
</tr>
<tr>
<td>SF.LOG</td>
<td>Logical Protection</td>
</tr>
<tr>
<td>SF.COMP</td>
<td>Protection of Mode Control</td>
</tr>
<tr>
<td>SF.MEM_ACC</td>
<td>Memory Access Control</td>
</tr>
<tr>
<td>SF.SFR_ACC</td>
<td>Special Function Register Access Control</td>
</tr>
<tr>
<td>SF.FFW</td>
<td>Firmware Firewall</td>
</tr>
<tr>
<td>SF.FIRMWARE</td>
<td>Firmware Support</td>
</tr>
</tbody>
</table>

Note 8. The security functionality SS.RNG implements the hardware RNG. The TOE also implements software RNG as part of security functionality SF.SW_RNG; for details see section 7.1.1.13. The hardware RNG is not externally visible through the interfaces of the Crypto Library; instead users of the Crypto Library are intended to use the software RNG (SF.SW_RNG).

Note 9. The security functionality SF.LOG is extended by the crypto library TOE as described in section 7.2

Note 10. The following TSF are not used by the Crypto Library:

- SF.COMP (no special mode required)
- SF.MEM_ACC (only access to own code and workspace needed, no further assumptions about memory access are made)
- SF.SFR_ACC (only access to used SFRs needed, no further assumptions about SFR access are made)
- SF.FFW (no firmware used)
- SF.FIRMWARE (no firmware used)
- SS.RECONFIG (no reconfiguration possible when Crypto Library runs)

The IT security functionalities directly correspond to the TOE security functional requirements defined in section 6.1. The definitions of the IT security functionalities refer to the corresponding security functional requirements.
7.1.1 Security Services

7.1.1.1 SS.AES

The TOE uses the AES hardware coprocessor to provide AES encryption and decryption facility using 128, 192 or 256 bit keys.

The TOE implements two library versions for the AES (phSmx2ClAes library and part of phSmx2ClSymCfg library) with different security configurations.

The supported modes are ECB, “outer” CBC and CMAC (i.e. the CBC mode applied to the block cipher algorithm AES).

In addition, the TOE provides the ability to compute a CBC-MAC. The CBC-MAC mode of operation is rather similar to the CBC mode of operation, but returns only the last cipher text (see also [31] Algorithm 1).

SS.AES is a basic cryptographic function which provides the AES algorithm as defined by the standard [37].

The interface to SS.AES allows AES operations independent from prior key loading. The user has to take care that adequate keys of the correct size are loaded before the cryptographic operation is performed. Details are described in the user guidance [15] and the user manual [17].

Attack resistance for this security functionality is discussed in section 7.2.

This security functionality covers:
- FCS_COP.1[SW-AES].

7.1.1.2 SS.DES

The TOE uses the SmartMX2 DES hardware coprocessor to provide a DES encryption and decryption facility using 56-bit keys, and to provide Triple-DES encryption and decryption. The Triple-DES function uses double-length or triple-length keys with sizes of 112 or 168 bits respectively.

The TOE implements two library versions for the DES (phSmx2ClDes library and part of phSmx2ClSymCfg library) with different security configurations.

The supported modes are ECB, CBC and CMAC (i.e. the CBC mode applied to the block cipher algorithm 3DES or DES).

In addition, the TOE provides the ability to compute a CBC-MAC. The CBC-MAC mode of operation is rather similar to the CBC mode of operation, but returns only the last cipher text (see also [31] Algorithm 1, or [35] Appendix F). Like ECB and CBC, the CBC-MAC mode of operation can also be applied to both DES and 3DES as underlying block cipher algorithm.

To fend off attackers with high attack potential an adequate security level must be used (references can be found in national and international documents and standards). In particular this means that Single-DES shall not be used.

SS.DES is a modular basic cryptographic function which provides the DES and Triple-DES algorithm (with two and three keys) as defined by the standard [34].

The interface to SS.DES allows performing Single-DES or 2-key and 3-key Triple-DES operations independent from prior key loading. The user has to take care that adequate keys of the correct size are loaded before the cryptographic operation is performed. Details are described in the user manual [18]. All modes of operation (ECB, CBC,
CBC-MAC) can be applied to DES, two-key 3DES and three-key 3DES for a total of nine possible combinations.

Attack resistance for this security functionality is discussed in section 7.2.

This security functionality covers:
- FCS_COP.1[SW-DES]

7.1.1.3 SS.RSA

The TOE provides functions that implement the RSA algorithm for data encryption, decryption, signature and verification. All algorithms are defined in PKCS #1, v2.1 (RSAEP, RSADP, RSAP1, RSAVP1)

This routine supports various key lengths from 512 bits to 4096 bits. To fend off attackers with high attack potential an adequate key length must be used (references can be found in national and international documents and standards).

The TOE contains modular exponentiation functions, which, together with other functions in the TOE, perform the operations required for RSA encryption or decryption. Two different RSA algorithms are supported by the TOE, namely the "Simple Straight Forward Method" (called RSA "straight forward", the key consists of the pair n and d) and RSA using the "Chinese Remainder Theorem" (RSA CRT, the key consists of the quintuple p, q, dp, dq, qInv).

Attack resistance for this security functionality is discussed in section 7.2.

This security functionality covers:
- FCS_COP.1[RSA]

7.1.1.4 SS.RSA_Pad

The TOE provides functions that implement the RSA algorithm and the RSA-CRT algorithm for message and signature encoding. This IT security functionality supports the EME-OAEP and EMSA-PSS signature scheme. All algorithms are defined in PKCS #1, v2.1 (EME-OAEP, EMSA-PSS)

This routine supports various key lengths from 512 bits to 4096 bits. To fend off attackers with high attack potential an adequate key length must be used (references can be found in national and international documents and standards).

Attack resistance for this security functionality is discussed in section 7.2.

This security functionality covers:
- FCS_COP.1[RSA_Pad]

7.1.1.5 SS.RSA_PublicExp

The TOE provides functions that implement computation of an RSA public key from a private CRT key. All algorithms are defined in PKCS #1, v2.1.

This routine supports various key lengths from 512 bits to 4096 bits (CRT). To fend off attackers with high attack potential an adequate key length must be used (references can be found in national and international documents and standards).

Attack resistance for this security functionality is discussed in section 7.2.

This security functionality covers:
- FCS_COP.1[RSA_PubExp]
7.1.1.6 SS.ECDSA
The TOE provides functions to perform ECDSA Signature Generation and Signature Verification according to ISO/IEC 15946-2.

Note that hashing of the message must be done beforehand and is not provided by this security functionality, but could be provided by SS.SHA.

The supported key length is 128 bits to 576 bits. To fend off attackers with high attack potential an adequate key length must be used (references can be found in national and international documents and standards).

Attack resistance for this security functionality is discussed in section 7.2.

This security functionality covers:
- FCS_COP.1[ECDSA]

7.1.1.7 SS.ECC_DHKE
The TOE provides functions to perform Diffie-Hellman Key Exchange according to ISO/IEC 15946-3.

The supported key length is 128 bits to 576 bits. To fend off attackers with high attack potential an adequate key length must be used (references can be found in national and international documents and standards).

Attack resistance for this security functionality is discussed in section 7.2.

This security functionality covers:
- FCS_COP.1[ECC_DHKE]

7.1.1.8 SS.ECC_Additional
The TOE provides functions to perform a full ECC point addition according to ISO/IEC 15946-1.

The supported key length is 128 bits to 576 bits. To fend off attackers with high attack potential an adequate key length must be used (references can be found in national and international documents and standards).

Attack resistance for this security functionality is discussed in section 7.2.

This security functionality covers:
- FCS_COP.1[ECC_Additional]

7.1.1.9 SS.RSA_KeyGen
The TOE provides functions to generate RSA key pairs as described in PKCS #1, v2.1 and "Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen: Bekanntmachung zur elektronischen Signatur nach dem Signaturgesetz und der Signaturverordnung (Übersicht über geeignete Algorithmen), German "Bundesanzeiger Nr. 85", p. 2034, June 7th, 2011".

It supports various key lengths from 512 bits to 4096 bits. To fend off attackers with high attack potential an adequate key length must be used (references can be found in national and international documents and standards).

Two different output formats for the key parameters are supported by the TOE, namely the "Simple Straight Forward Method" (RSA "straight forward") and RSA using the "Chinese Remainder Theorem" (RSA CRT).

Attack resistance for this security functionality is discussed in section 7.2.
This security functionality covers:
 • FCS_CKM.1[RSA]

7.1.1.10 SS.ECC_KeyGen

The TOE provides functions to perform ECC over GF(p) Key Generation according to ISO/IEC 15946-1 section 6.1 and “Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen: Bekanntmachung zur elektronischen Signatur nach dem Signaturgesetz und der Signaturverordnung (Übersicht über geeignete Algorithmen), German “Bundesanzeiger Nr. 85”, p. 2034, June 7th, 2011”

It supports key length from 128 to 576 bits. To fend off attackers with high attack potential an adequate key length must be used (references can be found in national and international documents and standards).

Attack resistance for this security functionality is discussed in section 7.2.

This security functionality covers:
 • FCS_CKM.1[ECC]

7.1.1.11 SS.SHA

The TOE implements functions to compute the Secure Hash Algorithms SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 according to the standard FIPS 180-3 [36].

To fend off attackers with high attack potential an adequate security level must be used (references can be found in national and international documents and standards). In particular this means that SHA-1 shall not be used.

This security functionality covers:
 • FCS_COP.1[SHA]

7.1.1.12 SS.HMAC

The TOE provides functions to perform HMAC Keyed-hash Message Authentication algorithm according to FIPS198 [38].

There is not limitation on the supported key length except that it must be a multiple of 8 bits. To fend off attackers with high attack potential an adequate key length must be used (references can be found in national and international documents and standards).

Attack resistance for this security functionality is discussed in section 7.2.

This security functionality covers:
 • FCS_COP.1[HMAC]

7.1.1.13 SS.SW_RNG

The TOE contains both a hardware Random Number Generator (RNG) and a software RNG; for the hardware RNG (SS.SW_RNG) see the Note 8. SS.SW_RNG consists of the implementation of the software RNG and of appropriate online tests for the hardware RNG (as required for FCS_RNG.1[DET] taken from the Protection Profile [10] and the proposal for AIS20/31 [7]):

The Crypto Library implements a software (pseudo) RNG that can be used as a general purpose random source. This software RNG has to be seeded by random numbers taken from the hardware RNG implemented in the SmartMX2 processor. The implementation of the software RNG is based on the standard ANSI X9.17 as described in Menezes, A;

In addition, the Crypto Library implements appropriate online tests according to the Hardware User Guidance Manual [12] for the hardware RNG, which fulfills the functionality class P2 defined by the AIS31 [6] and class PTG.2 defined by the proposal for AIS20/31 [7], as required by SFR FCS_RNG.1[DET]. The interface of SS.SW_RNG allows to test the hardware RNG and to seed the software RNG after successful testing.

This security functionality covers:
- FCS_RNG.1[DET]

7.1.1.14 SS.COPY

The security service SS.COPY implements functionality to copy memory content in a secure manner protected against attacks.

This resistance against attacks is described in section 7.2.

This security functionality covers:
- FDP_SOP.1[COPY]

7.1.1.15 SS.COMPARE

The security service SS.COMPARE implements functionality to compare different blocks of memory content in a manner protected against attacks.

This resistance against attacks is described in section 7.2.

This security functionality covers:
- FDP_SOP.1[COMPARE]

7.1.2 Security Functions

7.1.2.1 SF.Object_Reuse

The TOE provides internal security measures which clear memory areas used by the Crypto Library after usage. This functionality is required by the security functional component FDP_RIP.1 taken from the Common Criteria Part 2 [2].

These measures ensure that a subsequent process may not gain access to cryptographic assets stored temporarily in memory used by the TOE.

This security functionality covers:
- FDP_RIP.1
- FCS_CKM.4

7.2 Security architectural information

Since this Security Target claims the assurance requirement ASE_TSS.2 security architectural information on a very high level is supposed to be included in the TSS to inform potential customers on how the TOE protects itself against interference, logical tampering and bypass. In the security architecture context, this covers the aspects selfprotection and non-bypassability.

SF.COMP

The protection of mode control is completely covered by the underlying hardware platform [11]
The logical protection relates to the SFRs FDP_ITT.1, FPT_ITT.1 and FDP_IFC.1. The underlying hardware platform contains a number of hardware countermeasures, and for details is referred to the Security Target of the hardware platform [11].

For AES, the resistance against SPA, DPA and timing attacks is provided by the co-processors in the hardware part of the TOE. In addition, the TOE implements two library versions for the AES algorithm (phSmx2ClAes library and part of phSmx2ClSymCfg library) with different security configurations. For more details on those different configurations please refer the user guidance documentation of the Crypto Library [15].

For DES, the resistance against SPA, DPA and timing attacks is provided by the co-processors in the hardware part of the TOE. In addition, the TOE implements two library versions for the DES algorithm (phSmx2ClDes library and part of phSmx2ClSymCfg library) with different security configurations. For more details on those different configurations please refer the user guidance documentation of the Crypto Library [15].

The TOE adds a number of countermeasures to protect RSA calculations and RSA key generation, modulus and exponent blinding is used. Furthermore, are timing attacks prevented using careful coding and timing resistance of the underlying co-processor.

For all ECC related calculations, randomized projective coordinates are used. Timing attacks are prevented using careful coding and timing resistance of the underlying co-processor.

For the key generation algorithms, there is no interface available to force the key generation to repeat the previous calculation with the same parameters.

For RSA also the number of times that the key generation and public key computation can be performed is limited.

For SHA, the TOE provides two implementations for each SHA algorithms (SHA-1, SHA-224, SHA256, SHA-384 and SHA-512 with different security level: standard security and high security level.

- The standard security level implementation implements countermeasures against timing attack ensuring that that the timing does not depend on the processed data as well as countermeasures against template attack.

- The high security level implementation implements same countermeasures against timing attack than the first one and in addition countermeasure against DPA and correlation power analysis. Those countermeasures consist in a random blinding of the processed data.

For HMAC the implementation uses the high security level implementation of SHA provided by the TOE (with timing and DPA and correlation power analysis countermeasures) and in addition the manipulation of the secure key is masked.

For the secure compare and secure copy function measures randomizing the program flow are implemented.

The control of operation conditions relates to the security requirements FRU_FLT.2 and FPT_FLS.1. The underlying hardware platform contains a number of hardware countermeasures. For the details is referred to the Security Target of the hardware platform [11].
The TOE implements a number of software sensors that detect DFA attacks on AES, DES, RSA and ECC. Also software sensors are implemented to detect perturbation attacks in the secure copy and the secure compare functions.

SF.PHY

Protection against physical manipulation and probing is completely covered by the underlying hardware platform [11].

8. **Annexes**

8.1 **Further Information contained in the PP**

The Annex of the Protection Profile ([10], chapter 7) provides further information. Section 7.1 of the PP describes the development and production process of smartcards, containing a detailed life-cycle description and a description of the assets of the Integrated Circuits Designer/Manufacturer. Section 8.3 of the PP gives examples of Attack Scenarios.

8.2 **Glossary and Vocabulary**

Note: To ease understanding of the used terms the glossary of the Protection Profile [10] is included here.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Data</td>
<td>All data managed by the Security IC Embedded Software in the application context. Application data comprise all data in the final Security IC.</td>
</tr>
<tr>
<td>Boot Mode</td>
<td>CPU mode of the TOE dedicated to the start-up of the TOE after every reset. This mode is not accessible for the Smartcard Embedded Software.</td>
</tr>
<tr>
<td>Composite Product Integrator</td>
<td>Role installing or finalizing the IC Embedded Software and the applications on platform transforming the TOE into the unpersonalized Composite Product after TOE delivery. The TOE Manufacturer may implement IC Embedded Software delivered by the Security IC Embedded Software Developer before TOE delivery (e.g. if the IC Embedded Software is implemented in Flash or is stored in the non-volatile memory as service provided by the IC Manufacturer or IC Packaging Manufacturer).</td>
</tr>
<tr>
<td>Composite Product Manufacturer</td>
<td>The Composite Product Manufacturer has the following roles (i) the Security IC Embedded Software Developer (Phase 1), (ii) the Composite Product Integrator (Phase 5) and (iii) the Personalizer (Phase 6). If the TOE is delivered after Phase 3 in form of wafers or sawn wafers (dice) he has the role of the IC Packaging Manufacturer (Phase 4) in addition. The customer of the TOE Manufacturer who receives the TOE during TOE Delivery. The Composite Product Manufacturer includes the Security IC Embedded Software developer and all roles after TOE Delivery up to Phase 6 (refer to Figure 2 on page 10 and Section 7.1.1).</td>
</tr>
</tbody>
</table>
CPU mode

Mode in which the CPU operates. The TOE supports five modes, the Boot Mode, Test Mode, Firmware Mode, System Mode and User Mode.

The Smartcard Embedded Software can only run in System Mode or User Mode. The other three modes (Boot, Test, and Firmware) are not accessible for the Smartcard Embedded Software.

DocStore

https://www.docstore.nxp.com/

End-consumer

User of the Composite Product in Phase 7.

Exceptions interrupts

Non-maskable interrupt of program execution starting from fixed (depending on exception source) address and enabling the System Mode. The source of exceptions are: hardware breakpoints, single fault injection detection, illegal instructions, stack overflow, unauthorised system calls, User Mode execution of RETI instruction and .

FabKey Area

A memory area in the EEPROM that contains data that is programmed during testing by the IC Manufacturer. The amount of data and the type of information can be selected by the customer.

Firmware Mode

CPU mode of the TOE dedicated to execution of the Emulation Framework, MIFARE DESFire and MIFARE Plus Operating System, which is part of the Security IC Dedicated Support Software. This mode is not accessible for the Security IC Embedded Software.

IC Dedicated Software

IC proprietary software embedded in a Security IC (also known as IC firmware) and developed by the IC Developer. Such software is required for testing purpose (IC Dedicated Test Software) but may provide additional services to facilitate usage of the hardware and/or to provide additional services (IC Dedicated Support Soft-ware).

IC Dedicated Test Software

That part of the IC Dedicated Software (refer to above) which is used to test the TOE before TOE Delivery but which does not provide any functionality thereafter.

IC Dedicated Support Software

That part of the IC Dedicated Software (refer to above) which provides functions after TOE Delivery. The usage of parts of the IC Dedicated Software might be restricted to certain phases.

Initialization Data

Initialization Data defined by the TOE Manufacturer to identify the TOE and to keep track of the Security IC’s production and further life-cycle phases are considered as belonging to the TSF data. These data are for instance used for traceability and for TOE identification (identification data).

Integrated Circuit (IC)

Electronic component(s) designed to perform processing and/or memory functions.

Memory

The memory comprises of the RAM, ROM, Flash and the EEPROM of the TOE.
Memory Management Unit: The MMU maps the virtual addresses used by the CPU into the physical addresses of the RAM, ROM, Flash and EEPROM. The mapping is determined by (a) the memory partition and (b) the memory segments in User Mode. Up to 64 memory segments are supported for the User Mode, whereas the memory partition is fixed. Each segment can be individually (i) positioned and sized (ii) enabled or disabled, (iii) controlled by access permissions for read, write and execute and (iv) assigns access rights for “Special Function Registers related to hardware components” for code executed in User Mode from this segment.

Memory Segment: Address spaces provided by the Memory Management Unit based on its configuration (the MMU segment table). The memory segments define which memory areas are accessible for code running in User Mode. They are located in RAM, ROM, Flash and EEPROM.

MIFARE: Contact-less smart card interface standard, complying with ISO14443A.

MMU segment table: This structure defines the segments that the Memory Management Unit will used for code running in User Mode. The structure can be located anywhere in the available memory for System Mode code. It also contains access rights for “Special Function Registers related to hardware components” for User Mode code.

Pre-personalization Data: Any data supplied by the Card Manufacturer that is injected into the non-volatile memory by the Integrated Circuits manufacturer (Phase 3). These data are for instance used for traceability and/or to secure shipment between phases.

Security IC: (as used in this Protection Profile) Composition of the TOE, the Security IC Embedded Software, User Data and the package (the Security IC carrier).

Security IC Embedded Software: Software embedded in a Security IC and normally not being developed by the IC Designer. The Security IC Embedded Software is designed in Phase 1 and embedded into the Security IC in Phase 3 or in later phases of the Security IC product life-cycle. Some part of that software may actually implement a Security IC application others may provide standard services. Nevertheless, this distinction doesn’t matter here so that the Security IC Embedded Software can be considered as being application dependent whereas the IC Dedicated Software is definitely not.

Security IC Product: Composite product which includes the Security Integrated Circuit (i.e. the TOE) and the Embedded Software and is evaluated as composite target of evaluation in the sense of the Supporting Document.

Special Function Registers: Registers used to access and configure the functions for the communication with an external interface device, the
cryptographic co-processor for Triple-DES, the Fame2 co-
processor for basic arithmetic functions to perform asymmetric
 cryptographic algorithms, the random numbers generator and
 chip configuration.

Security Row
Top-most 128 bytes of the EEPROM memory reserved for
configuration purposes as well as dedicated memory area for
the Smartcard Embedded Software to store life-cycle
information about the TOE.

Super System Mode
This mode represents either the Boot Mode, Test Mode or
Firmware Mode.

System Mode
The System Mode has unlimited access to the hardware
resources (with respect to the memory partition). The Memory
Management Unit can be configured in this mode.

Test Features
All features and functions (implemented by the IC Dedicated
Test Software and/or hardware) which are designed to be
used before TOE Delivery only and delivered as part of the
TOE.

Test Mode
CPU mode for configuration of the TOE executing the IC
Dedicated Test Software. The Test Mode is permanently and
irreversible disabled after production testing. In the Test Mode
specific Special Function Registers are accessible for test
purposes.

TOE Delivery
The period when the TOE is delivered which is (refer to Figure
2 on page 10) either (i) after Phase 3 (or before Phase 4) if
the TOE is delivered in form of wafers or sawn wafers (dice) or
(ii) after Phase 4 (or before Phase 5) if the TOE is delivered in
form of packaged products.

TOE Manufacturer
The TOE Manufacturer must ensure that all requirements for
the TOE (as defined in Section 1.2.2) and its development and
production environment are fulfilled (refer to Figure 2 on page
10).

The TOE Manufacturer has the following roles: (i) IC
Developer (Phase 2) and (ii) IC Manufacturer (Phase 3). If the
TOE is delivered after Phase 4 in form of packaged products,
he has the role of the (iii) IC Packaging Manufacturer (Phase
4) in addition.

TSF data
Data created by and for the TOE, that might affect the
operation of the TOE. This includes information about the
TOE’s configuration, if any is coded in non-volatile non-
programmable memories (ROM), in specific circuitry, in non-
volatile programmable memories (for instance E2PROM) or a
combination thereof.

User Mode
The User Mode has access to the memories under control of
the Memory Management Unit. The access to the Special
Function Registers is limited.
User Data

All data managed by the Smartcard Embedded Software in the application context. User data comprise all data in the final Smartcard IC except the TSF data.
9. Bibliography

9.1 CC + CEM

9.2 AIS

9.3 Hardware-related documents

[13] Product data sheet P61N1M3 family; Secure dual interface and contact PKI smart card controller

[14] Instruction Set SmartMX2-Family
9.4 Documents related to the crypto library

9.5 Standards and text books

[40] NIST Special Publication 800-38A: Recommendation for Block Cipher Modes of Operation: Methods and Techniques, December 2001, Morris Dworkin, National Institute of Standards and Technology

[41] NIST Special Publication 800-38B: Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication, May 2005, Morris Dworkin, National Institute of Standards and Technology

10. Legal information

10.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

10.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

10.3 Licenses

ICs with DPA Countermeasures functionality

NXP ICs containing functionality implementing countermeasures to Differential Power Analysis and Simple Power Analysis are produced and sold under applicable license from Cryptography Research, Inc.

NXP Semiconductors

10.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are property of their respective owners.
11. Contents

1. ST Introduction ...4
 1.1 ST Identification4
 1.2 TOE overview4
 1.2.1 Introduction4
 1.2.2 Life-Cycle5
 1.2.3 Specific Issues of Smartcard Hardware and the
 Common Criteria5
 1.3 TOE Description5
 1.3.1 Hardware Description7
 1.3.2 Software Description7
 1.3.3 Documentation9
 1.3.4 Interface of the TOE9
 1.3.5 Life Cycle and Delivery of the TOE10
 1.3.6 TOE Intended Usage10
 1.3.7 TOE User Environment10
 1.3.8 General IT features of the TOE11
2. CC Conformance and Evaluation Assurance
 Level ..11
 2.1 Conformance Claim Rationale11
3. Security Problem Definition12
 3.1 Description of Assets12
 3.2 Threats ..12
 3.3 Organisational Security Policies13
 3.4 Assumptions14
4. Security Objectives14
 4.1 Security Objectives for the TOE14
 4.2 Security Objectives for the Security IC
 Embedded Software16
 4.3 Security Objectives for the Operational
 Environment17
 4.4 Security Objectives Rationale17
5. Extended components definition19
 5.1 Secure basic operations (FDP_SOP)19
6. Security Requirements20
 6.1 Security Functional Requirements20
 6.1.1 SFRs of the Protection Profile and the Security
 Target of the platform20
 6.1.2 Security Functional Requirements added in
 this Security Target20
 6.1.3 Extended TOE security functional requirements
 ..28
 6.2 Security Assurance Requirements29
 6.2.1 Refinements of the TOE Security Assurance
 Requirements30
 6.3 Security Requirements Rationale31
 6.3.1 Rationale for the security functional requirements
 ..31
 6.3.2 Extended requirements34
 6.3.3 Dependencies of security requirements34
 6.3.4 Rationale for the Assurance Requirements34
7. TOE Summary Specification34
 7.1 IT Security Functionality34
 7.1.1 Security Services36
 7.1.1.1 SS.AES36
 7.1.1.2 SS.DES36
 7.1.1.3 SS.RSA37
 7.1.1.4 SS.RSA_Pad37
 7.1.1.5 SS.RSA_PublicExp37
 7.1.1.6 SS.ECDSA38
 7.1.1.7 SS.ECC_DHKE38
 7.1.1.8 SS.ECC_Additional38
 7.1.1.9 SS.RSA_KeyGen38
 7.1.1.10 SS.ECC_KeyGen39
 7.1.1.11 SS.SHA39
 7.1.1.12 SS.HMAC39
 7.1.1.13 SS.SW_RNG39
 7.1.1.14 SS.COPY40
 7.1.1.15 SS.COMPARE40
 7.1.2 Security Functions40
 7.1.2.1 SF.Object_Reuse40
 7.2 Security architectural information40
8. Annexes ..42
 8.1 Further Information contained in the PP42
 8.2 Glossary and Vocabulary42
9. Bibliography ...47
 9.1 CC + CEM ..47
 9.2 AIS ...47
 9.3 Hardware-related documents47
 9.4 Documents related to the crypto library48
 9.5 Standards and text books48
10. Legal information50
 10.1 Definitions50
 10.2 Disclaimers50
 10.3 Licenses ...50
 10.4 Trademarks50
11. Contents ...51

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2019. All rights reserved.

For more information, visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 1 March 2019

NSCIB-
CC-15-37812

Document identifier: